【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

只讲几个注意事项:

1、graph.formats() 函数可以查看graph格式,也可以指定graph格式。

python 复制代码
g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 查看格式
g.formats()
# => {'created': ['coo'], 'not created': ['csr', 'csc']}

# 指定一种格式
csr_g = g.formats('csr')
csr_g.formats()
# => {'created': ['csr'], 'not created': []}

# 指定多种格式
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo', 'csr'], 'not created': []}

2、在调用 formats(['coo', 'csr']) 时,如果当前图的格式与指定格式没有交集,DGL 会按照 coo -> csr -> csc 的顺序选择一种格式创建。因此,如果图在反序列化后没有 CSR 格式,调用 formats(['coo', 'csr']) 可能只会创建 COO 格式。

python 复制代码
g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 假设只有一种格式
g.formats()
# => {'created': ['coo'], 'not created': ['csc']}

# 交集没有csr,就不会设置成功
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo'], 'not created': []}

3、上述第2点,虽然没有指定格式,但是可以通过graph.create_formats_来显式创建。

python 复制代码
g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 假设只有一种coo格式
g.formats()
# => {'created': ['coo'], 'not created': ['csc']}

# 交集没有csr,就不会设置成功
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo'], 'not created': ['csr']}

# 显式创建格式
new_g.create_formats_()
print(new_g.formats())
# => {'created': ['coo', 'csr'], 'not created': []}

4、使用 pickle 对 DGL 图对象进行序列化和反序列化后,图的存储格式可能会丢失或被重置为 COO 格式。

python 复制代码
import dgl
import pickle

# 创建一个图并设置多种格式
g = dgl.graph(([0, 1, 2], [1, 2, 3]))
g = g.formats(['coo', 'csr', 'csc'])

# 使用 pickle 保存
with open('graph.pkl', 'wb') as f:
    pickle.dump(g, f)

# 使用 pickle 加载
with open('graph.pkl', 'rb') as f:
    loaded_g = pickle.load(f)

# 检查加载后的格式
print(loaded_g.formats())  # 可能会丢失某些格式

5、可以考虑使用 DGL 提供的保存dgl.save_graphs和加载dgl.load_graphs方法,这些方法能够更好地处理图的内部状态,包括稀疏格式。

python 复制代码
# 保存图
dgl.save_graphs("graph.bin", [graph])

# 加载图
loaded_graphs, _ = dgl.load_graphs("graph.bin")
graph = loaded_graphs[0]
相关推荐
AI趋势预见31 分钟前
使用AI生成金融时间序列数据:解决股市场的数据稀缺问题并提升信噪比
人工智能·深度学习·神经网络·语言模型·金融
Zda天天爱打卡1 小时前
【机器学习实战中阶】使用Python和OpenCV进行手语识别
人工智能·python·深度学习·opencv·机器学习
背太阳的牧羊人2 小时前
冻结语言模型中的 自注意力层,使其参数不参与训练(梯度不会更新)。 对于跨注意力层,则解冻参数,使这些层可以进行梯度更新,从而参与训练。
人工智能·语言模型·自然语言处理
2401_890416712 小时前
Recaptcha2 图像怎么识别
人工智能·python·django
机器之心3 小时前
贾佳亚团队联合Adobe提出GenProp,物体追踪移除特效样样在行
人工智能
一叶_障目3 小时前
机器学习之决策树(DecisionTree——C4.5)
人工智能·决策树·机器学习
思码逸研发效能3 小时前
在 DevOps 实践中,如何构建自动化的持续集成和持续交付(CI/CD)管道,以提高开发和测试效率?
运维·人工智能·ci/cd·自动化·研发效能·devops·效能度量
AI量化投资实验室4 小时前
deap系统重构,再新增一个新的因子,年化39.1%,卡玛提升至2.76(附python代码)
大数据·人工智能·重构
张登杰踩4 小时前
如何快速下载Huggingface上的超大模型,不用梯子,以Deepseek-R1为例子
人工智能
AIGC大时代4 小时前
分享14分数据分析相关ChatGPT提示词
人工智能·chatgpt·数据分析