【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

只讲几个注意事项:

1、graph.formats() 函数可以查看graph格式,也可以指定graph格式。

python 复制代码
g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 查看格式
g.formats()
# => {'created': ['coo'], 'not created': ['csr', 'csc']}

# 指定一种格式
csr_g = g.formats('csr')
csr_g.formats()
# => {'created': ['csr'], 'not created': []}

# 指定多种格式
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo', 'csr'], 'not created': []}

2、在调用 formats(['coo', 'csr']) 时,如果当前图的格式与指定格式没有交集,DGL 会按照 coo -> csr -> csc 的顺序选择一种格式创建。因此,如果图在反序列化后没有 CSR 格式,调用 formats(['coo', 'csr']) 可能只会创建 COO 格式。

python 复制代码
g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 假设只有一种格式
g.formats()
# => {'created': ['coo'], 'not created': ['csc']}

# 交集没有csr,就不会设置成功
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo'], 'not created': []}

3、上述第2点,虽然没有指定格式,但是可以通过graph.create_formats_来显式创建。

python 复制代码
g = dgl.graph(([0, 0, 1], [2, 3, 2]))
g.ndata['h'] = torch.ones(4, 1)

# 假设只有一种coo格式
g.formats()
# => {'created': ['coo'], 'not created': ['csc']}

# 交集没有csr,就不会设置成功
new_g = g.formats(['coo', 'csr'])
new_g .formats()
# => {'created': ['coo'], 'not created': ['csr']}

# 显式创建格式
new_g.create_formats_()
print(new_g.formats())
# => {'created': ['coo', 'csr'], 'not created': []}

4、使用 pickle 对 DGL 图对象进行序列化和反序列化后,图的存储格式可能会丢失或被重置为 COO 格式。

python 复制代码
import dgl
import pickle

# 创建一个图并设置多种格式
g = dgl.graph(([0, 1, 2], [1, 2, 3]))
g = g.formats(['coo', 'csr', 'csc'])

# 使用 pickle 保存
with open('graph.pkl', 'wb') as f:
    pickle.dump(g, f)

# 使用 pickle 加载
with open('graph.pkl', 'rb') as f:
    loaded_g = pickle.load(f)

# 检查加载后的格式
print(loaded_g.formats())  # 可能会丢失某些格式

5、可以考虑使用 DGL 提供的保存dgl.save_graphs和加载dgl.load_graphs方法,这些方法能够更好地处理图的内部状态,包括稀疏格式。

python 复制代码
# 保存图
dgl.save_graphs("graph.bin", [graph])

# 加载图
loaded_graphs, _ = dgl.load_graphs("graph.bin")
graph = loaded_graphs[0]
相关推荐
醉方休6 分钟前
TensorFlow.js高级功能
javascript·人工智能·tensorflow
云宏信息10 分钟前
赛迪顾问《2025中国虚拟化市场研究报告》解读丨虚拟化市场迈向“多元算力架构”,国产化与AI驱动成关键变量
网络·人工智能·ai·容器·性能优化·架构·云计算
红苕稀饭66617 分钟前
VideoChat-Flash论文阅读
人工智能·深度学习·机器学习
周杰伦_Jay17 分钟前
【图文详解】强化学习核心框架、数学基础、分类、应用场景
人工智能·科技·算法·机器学习·计算机视觉·分类·数据挖掘
Teacher.chenchong19 分钟前
基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践技术应用
pytorch·深度学习·无人机
黄啊码1 小时前
Coze新品实测:当AI开始像产品经理思考,我和程序员吵架的次数少了
人工智能·agent·coze
jie*1 小时前
小杰机器学习(six)——概率论——1.均匀分布2.正态分布3.数学期望4.方差5.标准差6.多维随机变量及其分布
人工智能·机器学习·概率论
挽安学长1 小时前
通过 gaccode在国内使用ClaudeCode,Windows、Mac 用户配置指南!
人工智能
唐某人丶2 小时前
教你如何用 JS 实现 Agent 系统(3)—— 借鉴 Cursor 的设计模式实现深度搜索
前端·人工智能·aigc
weixin_457340212 小时前
RTX5060 Ti显卡安装cuda版本PyTorch踩坑记录
人工智能·pytorch·python