亚博microros小车-原生ubuntu支持系列:11手指控制与手势识别

识别框架还是沿用之前的了MediaPipe Hand。

背景知识不摘重复,参见之前的:亚博microros小车-原生ubuntu支持系列:10-画笔-CSDN博客

手指控制

src/yahboom_esp32_mediapipe/yahboom_esp32_mediapipe/目录下新建文件10_HandCtrl.py,代码如下:

python 复制代码
#!/usr/bin/env python3
# encoding: utf-8
import math
import time
import cv2 as cv
import numpy as np
import mediapipe as mp
import rclpy
from rclpy.node import Node
from cv_bridge import CvBridge
from sensor_msgs.msg import Image, CompressedImage

from rclpy.time import Time
import datetime

volPer = value = index = 0
effect = ["color", "thresh", "blur", "hue", "enhance"]
volBar = 400
class handDetector:
    def __init__(self, mode=False, maxHands=2, detectorCon=0.5, trackCon=0.5):
        self.tipIds = [4, 8, 12, 16, 20]
        self.mpHand = mp.solutions.hands
        self.mpDraw = mp.solutions.drawing_utils
        self.hands = self.mpHand.Hands(#模型初始化
            static_image_mode=mode,
            max_num_hands=maxHands,
            min_detection_confidence=detectorCon,
            min_tracking_confidence=trackCon
        )
        self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0, 255), thickness=-1, circle_radius=15)
        self.drawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 255, 0), thickness=10, circle_radius=10)
    #距离计算
    def get_dist(self, point1, point2):
        x1, y1 = point1
        x2, y2 = point2
        return abs(math.sqrt(math.pow(abs(y1 - y2), 2) + math.pow(abs(x1 - x2), 2)))
    #计算角度
    def calc_angle(self, pt1, pt2, pt3):
        point1 = self.lmList[pt1][1], self.lmList[pt1][2]
        point2 = self.lmList[pt2][1], self.lmList[pt2][2]
        point3 = self.lmList[pt3][1], self.lmList[pt3][2]
        a = self.get_dist(point1, point2)
        b = self.get_dist(point2, point3)
        c = self.get_dist(point1, point3)
        try:#余弦定理
            radian = math.acos((math.pow(a, 2) + math.pow(b, 2) - math.pow(c, 2)) / (2 * a * b))
            angle = radian / math.pi * 180#弧度转角度
        except:
            angle = 0
        return abs(angle)

    def findHands(self, frame, draw=True):
        img = np.zeros(frame.shape, np.uint8)
        img_RGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)#图像格式转换
        self.results = self.hands.process(img_RGB)#检测
        if self.results.multi_hand_landmarks:
            for handLms in self.results.multi_hand_landmarks:#输出关键点
                if draw: self.mpDraw.draw_landmarks(img, handLms, self.mpHand.HAND_CONNECTIONS)
        return img

    def findPosition(self, frame, draw=True):
        self.lmList = []
        if self.results.multi_hand_landmarks:
            for id, lm in enumerate(self.results.multi_hand_landmarks[0].landmark):
                # print(id,lm)
                h, w, c = frame.shape
                cx, cy = int(lm.x * w), int(lm.y * h)
                # print(id, lm.x, lm.y, lm.z)
                self.lmList.append([id, cx, cy])#记录指点序号与坐标
                if draw: cv.circle(frame, (cx, cy), 15, (0, 0, 255), cv.FILLED)
        return self.lmList

    def frame_combine(slef,frame, src):
        if len(frame.shape) == 3:
            frameH, frameW = frame.shape[:2]
            srcH, srcW = src.shape[:2]
            dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)
            dst[:, :frameW] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        else:
            src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
            frameH, frameW = frame.shape[:2]
            imgH, imgW = src.shape[:2]
            dst = np.zeros((frameH, frameW + imgW), np.uint8)
            dst[:, :frameW] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        return dst

class MY_Picture(Node):
    def __init__(self, name):
        super().__init__(name)
        self.bridge = CvBridge()
        self.sub_img = self.create_subscription(
            CompressedImage, '/espRos/esp32camera', self.handleTopic, 1) #获取esp32传来的图像

        self.hand_detector = handDetector()
        self.volPer = self.value = self.index = 0
        self.effect = ["color", "thresh", "blur", "hue", "enhance"]
        self.volBar = 400
        self.last_stamp = None
        self.new_seconds = 0
        self.fps_seconds = 1

    def handleTopic(self, msg):
        self.last_stamp = msg.header.stamp  
        if self.last_stamp:
            total_secs = Time(nanoseconds=self.last_stamp.nanosec, seconds=self.last_stamp.sec).nanoseconds
            delta = datetime.timedelta(seconds=total_secs * 1e-9)
            seconds = delta.total_seconds()*100

            if self.new_seconds != 0:
                self.fps_seconds = seconds - self.new_seconds

            self.new_seconds = seconds#保留这次的值
        start = time.time()
        frame = self.bridge.compressed_imgmsg_to_cv2(msg)
        frame = cv.resize(frame, (640, 480))

        action = cv.waitKey(1) & 0xFF

        img  = self.hand_detector.findHands(frame)
        lmList = self.hand_detector.findPosition(frame, draw=False)
        if len(lmList) != 0:
            angle = self.hand_detector.calc_angle(4, 0, 8)#计算拇指,0点,食指尖的角度
            x1, y1 = lmList[4][1], lmList[4][2]
            x2, y2 = lmList[8][1], lmList[8][2]
            cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
            cv.circle(img, (x1, y1), 15, (255, 0, 255), cv.FILLED)
            cv.circle(img, (x2, y2), 15, (255, 0, 255), cv.FILLED)
            cv.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
            cv.circle(img, (cx, cy), 15, (255, 0, 255), cv.FILLED)
            if angle <= 10: cv.circle(img, (cx, cy), 15, (0, 255, 0), cv.FILLED)
            self.volBar = np.interp(angle, [0, 70], [400, 150])
            self.volPer = np.interp(angle, [0, 70], [0, 100])
            self.value = np.interp(angle, [0, 70], [0, 255])
            # print("angle: {},self.value: {}".format(angle, self.value))
            print(f'mode:{self.effect[self.index]}')
        # 进行阈值二值化操作,大于阈值value的,使用255表示,小于阈值value的,使用0表示
        if self.effect[self.index]=="thresh":
            gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
            frame = cv.threshold(gray, self.value, 255, cv.THRESH_BINARY)[1]
        # 进行高斯滤波,(21, 21)表示高斯矩阵的长与宽都是21,标准差取value
        elif self.effect[self.index]=="blur":
            frame = cv.GaussianBlur(frame, (21, 21), np.interp(self.value, [0, 255], [0, 11]))
        # 色彩空间的转化,HSV转换为BGR
        elif self.effect[self.index]=="hue":
            frame = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
            frame[:, :, 0] += int(self.value)
            frame = cv.cvtColor(frame, cv.COLOR_HSV2BGR)
        # 调节对比度
        elif self.effect[self.index]=="enhance":
            enh_val = self.value / 40
            clahe = cv.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))
            lab = cv.cvtColor(frame, cv.COLOR_BGR2LAB)
            lab[:, :, 0] = clahe.apply(lab[:, :, 0])
            frame = cv.cvtColor(lab, cv.COLOR_LAB2BGR)
        if action == ord('f'):
            self.index += 1
            if self.index >= len(self.effect): self.index = 0
        
        end = time.time()
        fps = 1 / ((end - start)+self.fps_seconds)
        text = "FPS : " + str(int(fps))
        cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)
        cv.rectangle(img, (50, 150), (85, 400), (255, 0, 0), 3)
        cv.rectangle(img, (50, int(self.volBar)), (85, 400), (0, 255, 0), cv.FILLED)
        cv.putText(img, f'{int(self.volPer)}%', (40, 450), cv.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 3)
        dst = self.hand_detector.frame_combine(frame, img)
        cv.imshow('dst', dst)



def main():
    print("start it")
    rclpy.init()
    esp_img = MY_Picture("My_Picture")
    try:
        rclpy.spin(esp_img)
    except KeyboardInterrupt:
        pass
    finally:
        esp_img.destroy_node()
        rclpy.shutdown()

订阅esp32传出来的图像后,通过MediaPipe去做相关的识别后,再通过记录手指的点坐标,计算角4-0-8之间度数。本节与之前不同,增加了opencv输出的格式,"color", "thresh", "blur", "hue", "enhance"。默认是color,还有阈值化输出,高斯模糊等其他效果。按F键切换

构建后运行:

ros2 run yahboom_esp32_mediapipe HandCtrl

效果如下:

手势识别

src/yahboom_esp32_mediapipe/yahboom_esp32_mediapipe/目录下新建文件11_GestureRecognition.py,代码如下

python 复制代码
#!/usr/bin/env python3
# encoding: utf-8
import math
import time
import cv2 as cv
import numpy as np
import mediapipe as mp
import rclpy
from rclpy.node import Node
from cv_bridge import CvBridge
from sensor_msgs.msg import Image, CompressedImage

from rclpy.time import Time
import datetime

class handDetector:
    def __init__(self, mode=False, maxHands=2, detectorCon=0.5, trackCon=0.5):
        self.tipIds = [4, 8, 12, 16, 20]
        self.mpHand = mp.solutions.hands
        self.mpDraw = mp.solutions.drawing_utils
        self.hands = self.mpHand.Hands(
            static_image_mode=mode,
            max_num_hands=maxHands,
            min_detection_confidence=detectorCon,
            min_tracking_confidence=trackCon
        )
        self.lmList = []
        self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0, 255), thickness=-1, circle_radius=6)
        self.drawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2)

    def get_dist(self, point1, point2):
        x1, y1 = point1
        x2, y2 = point2
        return abs(math.sqrt(math.pow(abs(y1 - y2), 2) + math.pow(abs(x1 - x2), 2)))

    def calc_angle(self, pt1, pt2, pt3):
        point1 = self.lmList[pt1][1], self.lmList[pt1][2]
        point2 = self.lmList[pt2][1], self.lmList[pt2][2]
        point3 = self.lmList[pt3][1], self.lmList[pt3][2]
        a = self.get_dist(point1, point2)
        b = self.get_dist(point2, point3)
        c = self.get_dist(point1, point3)
        try:
            radian = math.acos((math.pow(a, 2) + math.pow(b, 2) - math.pow(c, 2)) / (2 * a * b))
            angle = radian / math.pi * 180
        except:
            angle = 0
        return abs(angle)


    def findHands(self, frame, draw=True):
        self.lmList = []
        img = np.zeros(frame.shape, np.uint8)
        img_RGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
        self.results = self.hands.process(img_RGB)
        if self.results.multi_hand_landmarks:
            for i in range(len(self.results.multi_hand_landmarks)):
                if draw: self.mpDraw.draw_landmarks(frame, self.results.multi_hand_landmarks[i], self.mpHand.HAND_CONNECTIONS, self.lmDrawSpec, self.drawSpec)
                self.mpDraw.draw_landmarks(img, self.results.multi_hand_landmarks[i], self.mpHand.HAND_CONNECTIONS, self.lmDrawSpec, self.drawSpec)
                for id, lm in enumerate(self.results.multi_hand_landmarks[i].landmark):
                    h, w, c = frame.shape
                    cx, cy = int(lm.x * w), int(lm.y * h)
                    self.lmList.append([id, cx, cy])
        return frame, img

    def frame_combine(slef,frame, src):
        if len(frame.shape) == 3:
            frameH, frameW = frame.shape[:2]
            srcH, srcW = src.shape[:2]
            dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)
            dst[:, :frameW] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        else:
            src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
            frameH, frameW = frame.shape[:2]
            imgH, imgW = src.shape[:2]
            dst = np.zeros((frameH, frameW + imgW), np.uint8)
            dst[:, :frameW] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        return dst

    def fingersUp(self):
        fingers=[]
        # Thumb
        if (self.calc_angle(self.tipIds[0],
                            self.tipIds[0] - 1,
                            self.tipIds[0] - 2) > 150.0) and (
                self.calc_angle(
                    self.tipIds[0] - 1,
                    self.tipIds[0] - 2,
                    self.tipIds[0] - 3) > 150.0): fingers.append(1)
        else:
            fingers.append(0)
        # 4 finger
        for id in range(1, 5):
            if self.lmList[self.tipIds[id]][2] < self.lmList[self.tipIds[id] - 2][2]:
                fingers.append(1)
            else:
                fingers.append(0)
        return fingers

    def get_gesture(self):
        gesture = ""
        fingers = self.fingersUp()
        if self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[1]][2] and \
                self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[2]][2] and \
                self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[3]][2] and \
                self.lmList[self.tipIds[0]][2] > self.lmList[self.tipIds[4]][2] : gesture = "Thumb_down"

        elif self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[1]][2] and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[2]][2] and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[3]][2] and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[4]][2] and \
                self.calc_angle(self.tipIds[1] - 1, self.tipIds[1] - 2, self.tipIds[1] - 3) < 150.0 : gesture = "Thumb_up"
        if fingers.count(1) == 3 or fingers.count(1) == 4:
            if fingers[0] == 1 and (
                    self.get_dist(self.lmList[4][1:], self.lmList[8][1:])<self.get_dist(self.lmList[4][1:], self.lmList[5][1:])
            ): gesture = "OK"
            elif fingers[2] == fingers[3] == 0: gesture = "Rock"
            elif fingers.count(1) == 3: gesture = "Three"
            else: gesture = "Four"
        elif fingers.count(1) == 0: gesture = "Zero"
        elif fingers.count(1) == 1: gesture = "One"
        elif fingers.count(1) == 2:
            if fingers[0] == 1 and fingers[4] == 1: gesture = "Six"
            elif fingers[0] == 1 and self.calc_angle(4, 5, 8) > 90: gesture = "Eight"
            elif fingers[0] == fingers[1] == 1 and self.get_dist(self.lmList[4][1:], self.lmList[8][1:]) < 50: gesture = "Heart_single"
            else: gesture = "Two"
        elif fingers.count(1)==5:gesture = "Five"
        if self.get_dist(self.lmList[4][1:], self.lmList[8][1:]) < 60 and \
                self.get_dist(self.lmList[4][1:], self.lmList[12][1:]) < 60 and \
                self.get_dist(self.lmList[4][1:], self.lmList[16][1:]) < 60 and \
                self.get_dist(self.lmList[4][1:], self.lmList[20][1:]) < 60 : gesture = "Seven"
        if self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[1]][2] and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[2]][2] and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[3]][2] and \
                self.lmList[self.tipIds[0]][2] < self.lmList[self.tipIds[4]][2] and \
                self.calc_angle(self.tipIds[1] - 1, self.tipIds[1] - 2, self.tipIds[1] - 3) > 150.0 : gesture = "Eight"
        return gesture



class MY_Picture(Node):
    def __init__(self, name):
        super().__init__(name)
        self.bridge = CvBridge()
        self.sub_img = self.create_subscription(
            CompressedImage, '/espRos/esp32camera', self.handleTopic, 1) #获取esp32传来的图像

        self.hand_detector = handDetector(detectorCon=0.75)
        self.last_stamp = None
        self.new_seconds = 0
        self.fps_seconds = 1

    def handleTopic(self, msg):
        self.last_stamp = msg.header.stamp  
        if self.last_stamp:
            total_secs = Time(nanoseconds=self.last_stamp.nanosec, seconds=self.last_stamp.sec).nanoseconds
            delta = datetime.timedelta(seconds=total_secs * 1e-9)
            seconds = delta.total_seconds()*100

            if self.new_seconds != 0:
                self.fps_seconds = seconds - self.new_seconds

            self.new_seconds = seconds#保留这次的值
        start = time.time()
        frame = self.bridge.compressed_imgmsg_to_cv2(msg)
        frame = cv.resize(frame, (640, 480))

        cv.waitKey(1) 
        frame, img = self.hand_detector.findHands(frame, draw=False)

        if len(self.hand_detector.lmList) != 0:
            totalFingers = self.hand_detector.get_gesture()
            cv.rectangle(frame, (0, 430), (230, 480), (0, 255, 0), cv.FILLED)
            cv.putText(frame, str(totalFingers), (10, 470), cv.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2)
        
        end = time.time()
        fps = 1 / ((end - start)+self.fps_seconds)
        text = "FPS : " + str(int(fps))
        cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 1)
        dist = self.hand_detector.frame_combine(frame, img)
        cv.imshow('dist', dist)


'''
Zero One Two Three Four Five Six Seven Eight
Ok: OK
Rock: rock
Thumb_up : 点赞
Thumb_down: 拇指向下
Heart_single: 单手比心
'''


def main():
    print("start it")
    rclpy.init()
    esp_img = MY_Picture("My_Picture")
    try:
        rclpy.spin(esp_img)
    except KeyboardInterrupt:
        pass
    finally:
        esp_img.destroy_node()
        rclpy.shutdown()

网上有不少这个例子,差异点可能在手势识别哪里,前面的hand模型都是一样的。

根据你预计的指点判断角度或者漏出的手指组合判断含义。有的也不太准确,大部分能识别。

构建后运行:ros2 run yahboom_esp32_mediapipe GestureRecognition

相关推荐
Icomi_43 分钟前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
西猫雷婶1 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉
xf8079891 小时前
cursor远程调试Ubuntu以及打开Ubuntu里面的项目
linux·运维·ubuntu
风清扬雨2 小时前
[特殊字符]【计算机视觉】r=2 采样滤波器全解析 ✨
人工智能·计算机视觉·r语言
xfchn多多学习学习3 小时前
Ubuntu 顶部状态栏 配置,gnu扩展程序
linux·ubuntu
一只励志翻身的咸鱼哥3 小时前
数字图像处理:实验七
图像处理·opencv·计算机视觉
bohu8311 小时前
亚博microros小车-原生ubuntu支持系列:10-画笔
opencv·ubuntu·计算机视觉·mediapipe·手部检测·micoros
惊鸿一博12 小时前
ubuntu_查询连接当前服务器的用户ip
服务器·tcp/ip·ubuntu
Quz12 小时前
OpenCV:在图像中添加高斯噪声、胡椒噪声
人工智能·opencv·计算机视觉·矩阵
点云SLAM13 小时前
CVPR 2024 无人机/遥感/卫星图像方向总汇(航空图像和交叉视角定位)
深度学习·计算机视觉·cvpr·遥感·卫星图像·交叉视觉定位