Canny 边缘检测

步骤

1.降噪

应用高斯滤波器,以平滑图像,滤除噪声。

边缘检测易受噪声影响,所以使用高斯滤波器平滑图像,降低噪声。

2.梯度

计算图像中每个像素点的梯度大小和方向。

计算大小

Sobel算子是一种常用的边缘检测滤波器,用于计算图像中水平和垂直方向上的梯度变化

就是点乘计算

计算方向

3.非极大值抑制

使用非极大值抑制,消除边缘检测带来的不利影响

4.双阈值检测

应用双阈值检测确定真实和潜在的边缘【双阈值检测

阈值 (minVal 和 maxVal) 是基于梯度大小(即边缘强度)来定义的

  • maxVal(高阈值):
    • 梯度值大于 maxVal 的像素点被直接认为是真正的边缘。
  • minVal(低阈值):
    • 梯度值小于 minVal 的像素点被忽略,认为不是边缘。
  • 梯度值介于 minVal 和 maxVal 之间:
    • 如果这些像素点与高于 maxVal 的边缘像素相连,则保留为边缘。
    • 如果没有相连,则丢弃。

实现

它有现成库可以调用啊

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 读取图像
image_path = r"D:\python\NAFNet-main\demo\tooth.png"  # 替换为你的图片路径
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

# 高斯模糊去噪
blurred = cv2.GaussianBlur(image, (5, 5), 0)

# Canny 边缘检测
edges = cv2.Canny(blurred, threshold1=5, threshold2=200)#这边就是最大最小边缘


# 显示原图和边缘检测结果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title("Original Image")
plt.imshow(image, cmap="gray")
plt.axis("off")

plt.subplot(1, 2, 2)
plt.title("Canny Edge Detection")
plt.imshow(edges, cmap="gray")
plt.axis("off")

plt.tight_layout()
plt.show()

最后结果

相关推荐
Mory_Herbert7 分钟前
5.2 参数管理
人工智能·pytorch·深度学习·神经网络·机器学习
Jasmine_llq7 分钟前
《P4391 [BalticOI 2009] Radio Transmission 无线传输 题解》
算法·字符串·substr
hanniuniu137 分钟前
强力巨彩谷亚推出专业智慧显示屏,满足多元场景需求
人工智能
He_Donglin16 分钟前
Data Mining|缺省值补全实验
人工智能·机器学习·数据挖掘
macken999917 分钟前
音频分类的学习
人工智能·深度学习·学习·计算机视觉·音视频
钟屿26 分钟前
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
仙人掌_lz33 分钟前
用PyTorch在超大规模下训练深度学习模型:并行策略全解析
人工智能·pytorch·深度学习
商业讯34 分钟前
深圳无人机展览即将开始,无人机舵机为什么选择伟创动力
人工智能
水水沝淼㵘34 分钟前
嵌入式开发学习日志(数据结构--单链表)Day20
c语言·开发语言·数据结构·学习·算法
算法给的安全感36 分钟前
bfs-最小步数问题
java·算法·宽度优先