Canny 边缘检测

步骤

1.降噪

应用高斯滤波器,以平滑图像,滤除噪声。

边缘检测易受噪声影响,所以使用高斯滤波器平滑图像,降低噪声。

2.梯度

计算图像中每个像素点的梯度大小和方向。

计算大小

Sobel算子是一种常用的边缘检测滤波器,用于计算图像中水平和垂直方向上的梯度变化

就是点乘计算

计算方向

3.非极大值抑制

使用非极大值抑制,消除边缘检测带来的不利影响

4.双阈值检测

应用双阈值检测确定真实和潜在的边缘【双阈值检测

阈值 (minVal 和 maxVal) 是基于梯度大小(即边缘强度)来定义的

  • maxVal(高阈值):
    • 梯度值大于 maxVal 的像素点被直接认为是真正的边缘。
  • minVal(低阈值):
    • 梯度值小于 minVal 的像素点被忽略,认为不是边缘。
  • 梯度值介于 minVal 和 maxVal 之间:
    • 如果这些像素点与高于 maxVal 的边缘像素相连,则保留为边缘。
    • 如果没有相连,则丢弃。

实现

它有现成库可以调用啊

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 读取图像
image_path = r"D:\python\NAFNet-main\demo\tooth.png"  # 替换为你的图片路径
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

# 高斯模糊去噪
blurred = cv2.GaussianBlur(image, (5, 5), 0)

# Canny 边缘检测
edges = cv2.Canny(blurred, threshold1=5, threshold2=200)#这边就是最大最小边缘


# 显示原图和边缘检测结果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title("Original Image")
plt.imshow(image, cmap="gray")
plt.axis("off")

plt.subplot(1, 2, 2)
plt.title("Canny Edge Detection")
plt.imshow(edges, cmap="gray")
plt.axis("off")

plt.tight_layout()
plt.show()

最后结果

相关推荐
飞哥数智坊20 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三20 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯21 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet1 天前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算1 天前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心1 天前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar1 天前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 天前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear1 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp