Canny 边缘检测

步骤

1.降噪

应用高斯滤波器,以平滑图像,滤除噪声。

边缘检测易受噪声影响,所以使用高斯滤波器平滑图像,降低噪声。

2.梯度

计算图像中每个像素点的梯度大小和方向。

计算大小

Sobel算子是一种常用的边缘检测滤波器,用于计算图像中水平和垂直方向上的梯度变化

就是点乘计算

计算方向

3.非极大值抑制

使用非极大值抑制,消除边缘检测带来的不利影响

4.双阈值检测

应用双阈值检测确定真实和潜在的边缘【双阈值检测

阈值 (minVal 和 maxVal) 是基于梯度大小(即边缘强度)来定义的

  • maxVal(高阈值):
    • 梯度值大于 maxVal 的像素点被直接认为是真正的边缘。
  • minVal(低阈值):
    • 梯度值小于 minVal 的像素点被忽略,认为不是边缘。
  • 梯度值介于 minVal 和 maxVal 之间:
    • 如果这些像素点与高于 maxVal 的边缘像素相连,则保留为边缘。
    • 如果没有相连,则丢弃。

实现

它有现成库可以调用啊

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 读取图像
image_path = r"D:\python\NAFNet-main\demo\tooth.png"  # 替换为你的图片路径
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

# 高斯模糊去噪
blurred = cv2.GaussianBlur(image, (5, 5), 0)

# Canny 边缘检测
edges = cv2.Canny(blurred, threshold1=5, threshold2=200)#这边就是最大最小边缘


# 显示原图和边缘检测结果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title("Original Image")
plt.imshow(image, cmap="gray")
plt.axis("off")

plt.subplot(1, 2, 2)
plt.title("Canny Edge Detection")
plt.imshow(edges, cmap="gray")
plt.axis("off")

plt.tight_layout()
plt.show()

最后结果

相关推荐
渡我白衣2 分钟前
深度学习进阶(八)——AI 操作系统的雏形:AgentOS、Devin 与多智能体协作
人工智能·深度学习
YY_TJJ4 分钟前
算法题——贪心算法
算法·贪心算法
C++ 老炮儿的技术栈10 分钟前
include″″与includ<>的区别
c语言·开发语言·c++·算法·visual studio
万岳软件开发小城15 分钟前
AI数字人系统源码+AI数字人小程序开发:2025年热门AI项目
人工智能·开源·软件开发·app开发·ai数字人小程序·ai数字人系统源码
xiangzhihong823 分钟前
Spring Boot集成SSE实现AI对话的流式响应
人工智能·spring boot
羊羊小栈24 分钟前
基于知识图谱(Neo4j)和大语言模型(LLM)的图检索增强(GraphRAG)的台风灾害知识问答系统(vue+flask+AI算法)
人工智能·毕业设计·知识图谱·创业创新·neo4j·毕设·大作业
+wacyltd大模型备案算法备案29 分钟前
【大模型备案】全国有439个大模型通过生成式人工智能大模型备案!
人工智能
学不会就看34 分钟前
PyTorch 张量学习
人工智能·pytorch·学习
兰文彬34 分钟前
Pytorch环境安装指南与建议
人工智能·pytorch·python
RainbowC040 分钟前
GapBuffer高效标记管理算法
android·算法