Canny 边缘检测

步骤

1.降噪

应用高斯滤波器,以平滑图像,滤除噪声。

边缘检测易受噪声影响,所以使用高斯滤波器平滑图像,降低噪声。

2.梯度

计算图像中每个像素点的梯度大小和方向。

计算大小

Sobel算子是一种常用的边缘检测滤波器,用于计算图像中水平和垂直方向上的梯度变化

就是点乘计算

计算方向

3.非极大值抑制

使用非极大值抑制,消除边缘检测带来的不利影响

4.双阈值检测

应用双阈值检测确定真实和潜在的边缘【双阈值检测

阈值 (minVal 和 maxVal) 是基于梯度大小(即边缘强度)来定义的

  • maxVal(高阈值):
    • 梯度值大于 maxVal 的像素点被直接认为是真正的边缘。
  • minVal(低阈值):
    • 梯度值小于 minVal 的像素点被忽略,认为不是边缘。
  • 梯度值介于 minVal 和 maxVal 之间:
    • 如果这些像素点与高于 maxVal 的边缘像素相连,则保留为边缘。
    • 如果没有相连,则丢弃。

实现

它有现成库可以调用啊

python 复制代码
import cv2
import matplotlib.pyplot as plt
import numpy as np

# 读取图像
image_path = r"D:\python\NAFNet-main\demo\tooth.png"  # 替换为你的图片路径
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

# 高斯模糊去噪
blurred = cv2.GaussianBlur(image, (5, 5), 0)

# Canny 边缘检测
edges = cv2.Canny(blurred, threshold1=5, threshold2=200)#这边就是最大最小边缘


# 显示原图和边缘检测结果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title("Original Image")
plt.imshow(image, cmap="gray")
plt.axis("off")

plt.subplot(1, 2, 2)
plt.title("Canny Edge Detection")
plt.imshow(edges, cmap="gray")
plt.axis("off")

plt.tight_layout()
plt.show()

最后结果

相关推荐
程序员陆通10 分钟前
独立开发A/B测试实用教程
人工智能·ai编程
knowfoot11 分钟前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络
FF-Studio19 分钟前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
DDDDDouble22 分钟前
<二>Sping-AI alibaba 入门-记忆聊天及持久化
java·人工智能
PyAIExplorer22 分钟前
图像处理中的插值方法:原理与实践
图像处理·人工智能
狗头大军之江苏分军33 分钟前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
Mr.Winter`34 分钟前
轨迹优化 | 基于激光雷达的欧氏距离场ESDF地图构建(附ROS C++仿真)
c++·人工智能·机器人·自动驾驶·ros·ros2·具身智能
Y1nhl1 小时前
力扣_链表_python版本
开发语言·python·算法·leetcode·链表·职场和发展
qq_401700411 小时前
C语言中位运算以及获取低8位和高8位、高低位合并
c语言·开发语言·算法
CoovallyAIHub1 小时前
YOLO模型优化全攻略:从“准”到“快”,全靠这些招!
深度学习·算法·计算机视觉