使用TensorFlow实现逻辑回归:从训练到模型保存与加载

1. 引入必要的库

首先,需要引入必要的库。TensorFlow用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。

python 复制代码
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2. 加载自定义数据集

假设有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。使用pandas来加载数据,并进行预处理。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签

# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)

3. 构建逻辑回归模型

使用TensorFlow的Keras接口来构建逻辑回归模型。

python 复制代码
# 构建逻辑回归模型
model = Sequential([
    Dense(1, activation='sigmoid', input_shape=(X.shape[1],))
])

# 编译模型
model.compile(optimizer=SGD(learning_rate=0.01), loss='binary_crossentropy', metrics=['accuracy'])

4. 训练模型

使用自定义数据集训练模型。

python 复制代码
# 训练模型
history = model.fit(X, y, epochs=100, batch_size=32, verbose=1)

5. 保存模型

训练完成后,可以使用TensorFlow的save方法保存模型。

python 复制代码
# 保存模型
model.save('logistic_regression_model.h5')

6. 加载模型并进行预测

在需要时,可以使用TensorFlow的load_model方法加载模型,并进行预测。

python 复制代码
# 加载模型
from tensorflow.keras.models import load_model

loaded_model = load_model('logistic_regression_model.h5')

# 进行预测
predictions = loaded_model.predict(X[:5])
predicted_labels = (predictions > 0.5).astype(int)

print("Predicted Labels:", predicted_labels.flatten())

7. 结果可视化

可以绘制训练过程中的损失和准确率变化曲线,以帮助理解模型的性能。

python 复制代码
# 绘制训练和验证的损失曲线
plt.plot(history.history['loss'], label='Loss')
plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

# 绘制训练和验证的准确率曲线
plt.plot(history.history['accuracy'], label='Accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
相关推荐
一切皆有可能!!2 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声3 小时前
爆炸仿真的学习日志
人工智能
华奥系科技4 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE4 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25115 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint5 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志5 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly5 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx995 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域6 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售