使用scikit-learn中的KNN包实现对鸢尾花数据集的预测

引言

K最近邻(KNN)算法是一种简单且直观的分类算法。它通过计算数据点之间的距离来对新样本进行分类。鸢尾花数据集是一个经典的机器学习数据集,包含了三种不同类型的鸢尾花,每种类型由四个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度)描述。本文将使用scikit-learn中的KNN算法对该数据集进行分类预测。

KNN算法概述

KNN算法的核心思想是:对于一个未知类别的样本,通过计算该样本与已知样本的距离,选择距离最近的K个样本进行投票,最终将该样本分类为票数最多的类别。

KNN的优缺点:

  • 优点
    • 简单易懂,易于实现。
    • 对于小型数据集效果较好。
  • 缺点
    • 计算复杂度高,特别是数据量大时。
    • 对数据的尺度敏感,可能需要进行标准化处理。

代码展示

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

#加载鸢尾花数据集
iris = datasets.load_iris()
#提取出特征数据
iris_X=iris.data
#目标标签
iris_y=iris.target

#会打乱数据
#test_size测试比例,train_test_split把训练数据和测试数据分开
X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_y,test_size=0.3)

#训练模型
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)

#预测值
print(knn.predict(X_test))

#真实值
print(y_test)

运行结果

总结

KNN算法是一种简单且有效的分类方法,尤其适用于小型数据集。在鸢尾花数据集上,KNN算法能够准确地对样本进行分类,并且选择合适的K值能够显著提升模型性能。

相关推荐
喵手6 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934736 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy6 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
九河云7 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
肖永威7 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ7 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha8 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy8 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
喵手8 小时前
Python爬虫实战:构建各地统计局数据发布板块的自动化索引爬虫(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集数据csv导出·采集各地统计局数据发布数据·统计局数据采集
pp起床9 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习