使用scikit-learn中的KNN包实现对鸢尾花数据集的预测

引言

K最近邻(KNN)算法是一种简单且直观的分类算法。它通过计算数据点之间的距离来对新样本进行分类。鸢尾花数据集是一个经典的机器学习数据集,包含了三种不同类型的鸢尾花,每种类型由四个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度)描述。本文将使用scikit-learn中的KNN算法对该数据集进行分类预测。

KNN算法概述

KNN算法的核心思想是:对于一个未知类别的样本,通过计算该样本与已知样本的距离,选择距离最近的K个样本进行投票,最终将该样本分类为票数最多的类别。

KNN的优缺点:

  • 优点
    • 简单易懂,易于实现。
    • 对于小型数据集效果较好。
  • 缺点
    • 计算复杂度高,特别是数据量大时。
    • 对数据的尺度敏感,可能需要进行标准化处理。

代码展示

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

#加载鸢尾花数据集
iris = datasets.load_iris()
#提取出特征数据
iris_X=iris.data
#目标标签
iris_y=iris.target

#会打乱数据
#test_size测试比例,train_test_split把训练数据和测试数据分开
X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_y,test_size=0.3)

#训练模型
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)

#预测值
print(knn.predict(X_test))

#真实值
print(y_test)

运行结果

总结

KNN算法是一种简单且有效的分类方法,尤其适用于小型数据集。在鸢尾花数据集上,KNN算法能够准确地对样本进行分类,并且选择合适的K值能够显著提升模型性能。

相关推荐
前端梭哈攻城狮32 分钟前
dify二开示例
前端·后端·python
秋难降35 分钟前
一篇文章带你了解Pandassssssssssssssss
大数据·python·pandas
java1234_小锋38 分钟前
[免费]【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)【论文+源码+SQL脚本】
python·flask·nlp·舆情分析·微博舆情分析
weixin_贾43 分钟前
模块自由拼装!Python重构DSSAT作物模块教程(以杂交水稻为例)
python·dssat
tilblackout1 小时前
机器学习详解(28):LightGBM原理
人工智能·机器学习
weixin_464078071 小时前
机器学习sklearn:决策树的参数、属性、接口
决策树·机器学习·sklearn
Warren981 小时前
Java Collections工具类
java·开发语言·笔记·python·学习·oracle·硬件工程
love530love2 小时前
Windows 11 下 Anaconda 命令修复指南及常见问题解决
运维·ide·人工智能·windows·python·架构·conda
NeoFii2 小时前
Day 24:元组与os模块
python·机器学习
半新半旧2 小时前
1.DRF 环境安装与配置
python·django