神经网络|(一)加权平均法,感知机和神经元

【1】引言

从这篇文章开始,将记述对神经网络知识的探索。相关文章都是学习过程中的感悟和理解,如有雷同或者南辕北辙的表述,请大家多多包涵。

【2】加权平均法

在数学课本和数理统计课本中,我们总会遇到求一组数据平均值的做法,而获得平均值的计算方法,是丰富且各有深远意义的。

在之前的学习进程中,在对numpy模块进行探索时,曾对平均值函数numpy.average()有过基础探索,相关文章链接为:numpy学习|average()函数基础_numpy average-CSDN博客

在这篇文章中,有一种加权平均值的计算方法,算法原理为:

对于一组数据,每个数据占有的权重不同,计算平均值时,每个数据和各自对应的权重相乘后再叠加。

比如两个数为1和5,对应的权重分别为0.8和0.2,获得这两个数的算术平均值和加权平均值的算法明显不同:

算术平均值计算方法:

加权平均值计算方法:

由上述例子可见,权重会给结果带来显著影响;相应的,掌握权重的分配,会直接影响计算结果的呈现。

【3】感知机

对加权平均值加一层结果判断,就是感知机,继续使用上述示例。

在上述示例中,两个数为1和5,对应的权重分别为0.8和0.2,如果在计算之前就规定,加权平均值只有在不小于2时才有效,其余情况会强制等于0。

那对于上述示例,加权平均值的计算结果是1.8,按照上述规则,此时就会直接赋值为0。

感知机就是一种二元分类器:加权平均值超过一个阈值开关,就会强制赋1,相反则强制赋0。

在opencv的学习进程中,阈值处理的方法与此有很大的相似性:cv.THRESH_BINARY阈值处理的原则是,给定阈值开关,大于开关的像素点,对其BGR值强制赋最大值255,相反则赋0。相关文章的链接为:python学opencv|读取图像(三十四)阈值处理-彩色图像-CSDN博客

相应的,如果把对加权平均值的大小比较写成加法(加阈值开关的负数),可以获得数学表达式:

【4】神经元

神经元是一个生物学概念,为便于理解,这里主要概述。

典型的神经元结构包括:细胞体和细胞突起,细胞体理解为神经元的处理中枢,细胞突起包括树突和轴突。

(树突可以理解为沿着神经元细胞体的边缘衍生出的小突起,数量多,可能叫做径向突起更便于理解;轴突可以理解为从神经元细胞体伸出来的突起,这个突起只有一个,在轴突的末端,和其他神经元相互连接的部分叫做突触。把树突理解为径向突起纯粹是为了和轴向突起进行对比,没有实际意义,请谅解。)

神经元的状态主要有两种:兴奋和抑制。

树突把兴奋信号传给细胞体,轴突通过突触把兴奋信号从一个神经元传给另一个神经元。

【5】总结

神经元只有兴奋和抑制的工作模式很像一种二元法则,非此即彼。

基于此,神经元可以理解为一种生物意义上的感知机,而感知机是对加权平均值进行阈值判断的二元分类器。

相关推荐
+电报dapp1293 分钟前
波场链DAPP智能合约系统开发:解锁Web3.0时代的价值新范式
大数据·人工智能·web3·去中心化·区块链·智能合约·信任链
Freshman小白14 分钟前
《人工智能与创新》网课答案2025
人工智能·学习·答案·网课答案
阿湯哥16 分钟前
当前主流AI Agent框架深度分析报告
人工智能
来两个炸鸡腿19 分钟前
DW动手学大模型应用全栈开发 - (1)大模型应用开发应知必会
python·深度学习·学习·nlp
陈喜标bill23 分钟前
S2B2C私域会员电商如何重构企业经营逻辑
大数据·人工智能·重构
donecoding23 分钟前
掌握 :focus-within,让你的AI对话输入体验更上一层楼!
前端·人工智能
newrank_kk24 分钟前
AI 搜索时代新战场:智汇GEO 如何重构品牌 AI 形象管理规则
人工智能·重构
qq_4182478824 分钟前
恒源云/autodl与pycharm远程连接
ide·人工智能·python·神经网络·机器学习·pycharm·图论
ccLianLian25 分钟前
ResCLIP
人工智能·计算机视觉
科学最TOP27 分钟前
AAAI25|基于神经共形控制的时间序列预测模型
人工智能·深度学习·神经网络·机器学习·时间序列