machine learning自定义数据集使用框架的线性回归方法对其进行拟合

使用框架(如Scikit-learn)对自定义数据集进行线性回归拟合是一个常见的任务。以下是一个详细的步骤指南,展示如何使用Scikit-learn库在Python中完成这一任务

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

# 示例数据
X = np.array([[1], [2], [3], [4], [5]])  # 特征,形状为 (n_samples, n_features)
y = np.array([1, 3, 2, 3, 5])           # 目标

# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

# 对测试集进行预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Mean Squared Error: {mse}")
print(f"R^2 Score: {r2}")

# 可视化结果
plt.scatter(X, y, color='blue', label='Data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
相关推荐
胡耀超9 分钟前
3.Python高级数据结构与文本处理
服务器·数据结构·人工智能·windows·python·大模型
索迪迈科技17 分钟前
GPS汽车限速器有哪些功能?主要运用在哪里?
人工智能·行车记录仪·车辆安全·监控管理·gps定位
Niuguangshuo42 分钟前
深度学习基本模块:Conv2D 二维卷积层
人工智能·深度学习
b***25111 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
金井PRATHAMA1 小时前
AI赋能训诂学:解码古籍智能新纪元
人工智能·自然语言处理·知识图谱
练习两年半的工程师1 小时前
AWS TechFest 2025: 智能体企业级开发流程、Strands Agents
人工智能·云计算·aws
Hello123网站1 小时前
Whismer-你的定制化AI问答助手
人工智能·chatgpt·ai工具
yinmaisoft2 小时前
当低代码遇上AI,有趣,实在有趣
android·人工智能·低代码·开发工具·rxjava
正经教主2 小时前
【慢教程】Ollama4:ollama命令汇总
人工智能·ollama
大翻哥哥2 小时前
Python 2025:AI工程化与智能代理开发实战
开发语言·人工智能·python