machine learning自定义数据集使用框架的线性回归方法对其进行拟合

使用框架(如Scikit-learn)对自定义数据集进行线性回归拟合是一个常见的任务。以下是一个详细的步骤指南,展示如何使用Scikit-learn库在Python中完成这一任务

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

# 示例数据
X = np.array([[1], [2], [3], [4], [5]])  # 特征,形状为 (n_samples, n_features)
y = np.array([1, 3, 2, 3, 5])           # 目标

# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

# 对测试集进行预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Mean Squared Error: {mse}")
print(f"R^2 Score: {r2}")

# 可视化结果
plt.scatter(X, y, color='blue', label='Data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
相关推荐
夏子曦5 分钟前
AI——认知建模工具:ACT-R
人工智能·机器学习·ai
studyer_domi18 分钟前
Matlab 基于Hough变换的人眼虹膜定位方法
人工智能·计算机视觉
qq_4369621828 分钟前
AI数据分析中的伪需求场景:现状、挑战与突破路径
人工智能·数据挖掘·数据分析·ai数据分析
flying_131442 分钟前
面试常问系列(一)-神经网络参数初始化-之-softmax
深度学习·神经网络·算法·机器学习·面试
layneyao1 小时前
AI与计算机视觉(CV):目标检测与图像分割的最新进展
人工智能·目标检测·计算机视觉
Clocky71 小时前
机器学习-数据集划分和特征工程
人工智能·深度学习·机器学习
机器学习之心HML1 小时前
Transformer编码器+SHAP分析,模型可解释创新表达!
人工智能·深度学习·transformer
多巴胺与内啡肽.1 小时前
OpenCV进阶操作:角点检测
人工智能·opencv·计算机视觉
鸿蒙布道师1 小时前
ChatGPT深度研究功能革新:GitHub直连与强化微调
人工智能·深度学习·神经网络·自然语言处理·chatgpt·数据挖掘·github