使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。

使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。

python 复制代码
#导入鸢尾花数据集
from sklearn.datasets import load_iris,fetch_20newsgroups
#数据化可视包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.neighbors import KNeighborsClassifier

#获取鸢尾花小规模数据集
iris=load_iris()
# print("鸢尾花的特征值:\n",iris['data'])
# print("鸢尾花的目标值:\n",iris['target'])
# print("鸢尾花的特征的名字:\n",iris['feature_names'])
# print("鸢尾花的目标值的名字:\n",iris['target_names'])
# print("鸢尾花的描述:\n",iris['DESCR'])
#数据可视化----只是为了数据可视化
iris_data1=pd.DataFrame(data=iris['data'],columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
print("")
#填充目标值
iris_data1['target']=iris['target']
#画图展示
def plot_iris(data,col1,col2):
    # x y  x轴和y轴数据索引值
    # data 具体的数据
    # hue 目标值,可以通过不同的目标显示不同的颜色
    # fit_reg 是否进行线性拟合
    sns.lmplot(x=col1, y=col2, data=data, hue='target', fit_reg=False)
    plt.title(r'data show')
    plt.xlabel(col1)
    plt.ylabel(col2)
    plt.show()

plot_iris(iris_data1,'Sepal_Length','Petal_Width')
#数据集的划分
# 机器学习一般的数据集划分分为两部分
#     1. 训练数据:用于训练,构建模型
#     2. 测试数据:在模型校验时使用,用于评估模型是否有效
# 划分比例:
#     1. 训练集 : 70%    80%    75%
#     2. 测试集 : 30%    20%    25%
#数据集的划分
x_train,x_test,y_train,y_test= train_test_split(iris['data'],iris['target'],test_size=0.2,random_state=42)
print("训练集的特征值是 : \n", x_train)
print("测试集的特征值是 : \n", x_test)
print("训练集的目标值是 : \n", y_train)
print("测试集的目标值是 : \n", y_test)

print("训练集的特征值形状 : \n", x_train.shape)
print("测试集的特征值形状 : \n", x_test.shape)
print("训练集的目标值形状 : \n", y_train.shape)
print("测试集的目标值形状 : \n", y_test.shape)

#特征数据预处理API

# 1.实例化
transfer=MinMaxScaler(feature_range=(0, 1))
#2.进行转换,调用fit_transform
ret_maxmin_data=transfer.fit_transform(x_train)
ret_maxmin_data=transfer.fit_transform(x_test)
#特征工程-特征预处理 规划为均值0附近标准差差为1
transfer1=StandardScaler()
ret_train_data=transfer1.fit_transform(x_train)
ret_test_data=transfer1.fit_transform(x_test)
#机器学习 构建KNN
#step1构建KNN并实例化
n_neighbors_num=5
knn_model=KNeighborsClassifier(n_neighbors=n_neighbors_num)
#step2模型训练 输入训练集和训练集标签
knn_model.fit(ret_train_data,y_train)

#step3 评估模型
#使用训练好的模型进行预测
y_pre=knn_model.predict(ret_test_data)
print('预测值是\n',y_pre)
print("预测值和真实值的对比是:\n",y_pre==y_test)
#准确率计算,注意如果是归一化后的数据就得用归一化后的数据进行预测计算准确率,不然效果很差
score=knn_model.score(ret_test_data,y_test)
print(f'准确率是:{score}')
相关推荐
程序员徐师兄29 分钟前
基于Python Django的人脸识别上课考勤系统(附源码,部署)
开发语言·python·django·人脸识别考勤·人脸识别上课考勤系统
Wangawf1 小时前
python小游戏-坦克大战
开发语言·python·pygame
是十一月末1 小时前
计算机视觉之dlib人脸关键点绘制及微笑测试
人工智能·python·计算机视觉·视觉检测·dlib
萧鼎1 小时前
深入解析 supervision 库:功能、用法与应用案例
python·python库·supervision
zybsjn1 小时前
Django框架下html文件无法格式化的解决方案
python·django·html
非晓为骁1 小时前
【Python】在Windows下配置Python最小环境并在React执行Python脚本
windows·python·react.js
ADFVBM1 小时前
初学者如何用 Python 写第一个爬虫?
开发语言·爬虫·python
ssxueyi2 小时前
Python中文自然语言处理库SnowNLP
python·自然语言处理·snownlp
猿毕设2 小时前
【FL0090】基于SSM和微信小程序的球馆预约系统
java·spring boot·后端·python·微信小程序·小程序
小馒头学python2 小时前
蓝耘元生代|调用Deepseek API提升数据集多样性:数据增强实践
python