使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。

使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。

python 复制代码
#导入鸢尾花数据集
from sklearn.datasets import load_iris,fetch_20newsgroups
#数据化可视包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.neighbors import KNeighborsClassifier

#获取鸢尾花小规模数据集
iris=load_iris()
# print("鸢尾花的特征值:\n",iris['data'])
# print("鸢尾花的目标值:\n",iris['target'])
# print("鸢尾花的特征的名字:\n",iris['feature_names'])
# print("鸢尾花的目标值的名字:\n",iris['target_names'])
# print("鸢尾花的描述:\n",iris['DESCR'])
#数据可视化----只是为了数据可视化
iris_data1=pd.DataFrame(data=iris['data'],columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
print("")
#填充目标值
iris_data1['target']=iris['target']
#画图展示
def plot_iris(data,col1,col2):
    # x y  x轴和y轴数据索引值
    # data 具体的数据
    # hue 目标值,可以通过不同的目标显示不同的颜色
    # fit_reg 是否进行线性拟合
    sns.lmplot(x=col1, y=col2, data=data, hue='target', fit_reg=False)
    plt.title(r'data show')
    plt.xlabel(col1)
    plt.ylabel(col2)
    plt.show()

plot_iris(iris_data1,'Sepal_Length','Petal_Width')
#数据集的划分
# 机器学习一般的数据集划分分为两部分
#     1. 训练数据:用于训练,构建模型
#     2. 测试数据:在模型校验时使用,用于评估模型是否有效
# 划分比例:
#     1. 训练集 : 70%    80%    75%
#     2. 测试集 : 30%    20%    25%
#数据集的划分
x_train,x_test,y_train,y_test= train_test_split(iris['data'],iris['target'],test_size=0.2,random_state=42)
print("训练集的特征值是 : \n", x_train)
print("测试集的特征值是 : \n", x_test)
print("训练集的目标值是 : \n", y_train)
print("测试集的目标值是 : \n", y_test)

print("训练集的特征值形状 : \n", x_train.shape)
print("测试集的特征值形状 : \n", x_test.shape)
print("训练集的目标值形状 : \n", y_train.shape)
print("测试集的目标值形状 : \n", y_test.shape)

#特征数据预处理API

# 1.实例化
transfer=MinMaxScaler(feature_range=(0, 1))
#2.进行转换,调用fit_transform
ret_maxmin_data=transfer.fit_transform(x_train)
ret_maxmin_data=transfer.fit_transform(x_test)
#特征工程-特征预处理 规划为均值0附近标准差差为1
transfer1=StandardScaler()
ret_train_data=transfer1.fit_transform(x_train)
ret_test_data=transfer1.fit_transform(x_test)
#机器学习 构建KNN
#step1构建KNN并实例化
n_neighbors_num=5
knn_model=KNeighborsClassifier(n_neighbors=n_neighbors_num)
#step2模型训练 输入训练集和训练集标签
knn_model.fit(ret_train_data,y_train)

#step3 评估模型
#使用训练好的模型进行预测
y_pre=knn_model.predict(ret_test_data)
print('预测值是\n',y_pre)
print("预测值和真实值的对比是:\n",y_pre==y_test)
#准确率计算,注意如果是归一化后的数据就得用归一化后的数据进行预测计算准确率,不然效果很差
score=knn_model.score(ret_test_data,y_test)
print(f'准确率是:{score}')
相关推荐
魔尔助理顾问18 分钟前
Flask如何读取配置信息
python·flask·bootstrap
jc_hook1 小时前
Python 接入DeepSeek
python·大模型·deepseek
chicpopoo2 小时前
Python打卡DAY25
开发语言·python
crazyme_62 小时前
深入掌握 Python 切片操作:解锁数据处理的高效密码
开发语言·python
Code_流苏3 小时前
《Python星球日记》 第69天:生成式模型(GPT 系列)
python·gpt·深度学习·机器学习·自然语言处理·transformer·生成式模型
于壮士hoho4 小时前
Python | Dashboard制作
开发语言·python
掘金-我是哪吒4 小时前
分布式微服务系统架构第131集:fastapi-python
分布式·python·微服务·系统架构·fastapi
小猪快跑爱摄影5 小时前
【Folium】使用离线地图
python
keke105 小时前
Java【10_1】用户注册登录(面向过程与面向对象)
java·python·intellij-idea
微刻时光6 小时前
影刀RPA网页自动化总结
运维·人工智能·python·低代码·自动化·rpa·影刀rpa