使用scikit-learn中的线性回归包对自定义数据集进行拟合

1. 导入必要的库

首先,需要导入所需的库,包括pandas用于数据处理,numpy用于数值计算,以及scikit-learn中的线性回归模型。

python 复制代码
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

2. 加载自定义数据集

假设有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。将使用pandas读取这个文件。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有两列:'feature'为特征,'target'为标签
X = data[['feature']].values  # 特征需要是二维数组
y = data['target'].values     # 标签

3. 分割数据集

为了评估模型的性能,将数据集分为训练集和测试集。

python 复制代码
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

4. 创建并训练线性回归模型

使用scikit-learn中的LinearRegression类创建线性回归模型,并使用训练集进行训练。

python 复制代码
# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

5. 进行预测并评估模型

使用测试集进行预测,并评估模型的性能。将使用均方误差(MSE)和决定系数(R²)作为评估指标。

python 复制代码
# 进行预测
y_pred = model.predict(X_test)

# 计算均方误差和决定系数
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse:.2f}')
print(f'R² Score: {r2:.2f}')

6. 可视化结果

为了更直观地了解模型的拟合效果,可以绘制散点图来显示真实值和预测值。

python 复制代码
# 可视化结果
plt.scatter(X_test, y_test, color='black', label='Actual data')
plt.plot(X_test, y_pred, color='blue', linewidth=3, label='Fitted line')

plt.xlabel('Feature')
plt.ylabel('Target')
plt.title('Linear Regression Fit')
plt.legend()
plt.show()
相关推荐
IT北辰8 分钟前
【Python实战升级版】企业用电深度分析完整版|十大可视化图表+智慧能源看板,电费优化/数据汇报
python
小白学大数据1 小时前
爬虫技术选股:Python 自动化筛选潜力股
开发语言·爬虫·python·自动化
践行见远1 小时前
django之认证与权限
python·django
青春不败 177-3266-05201 小时前
基于R语言lavaan结构方程模型(SEM)实践技术应用
python·r语言·贝叶斯·生态学·结构方程·sem
费弗里2 小时前
进阶技巧:在Dash应用中直接使用原生React组件
python·dash
Ashley_Amanda2 小时前
Python入门知识点梳理
开发语言·windows·python
tjjucheng2 小时前
小程序定制开发哪家有完整流程
python
海棠AI实验室2 小时前
第十二章 类型标注与可读性:让协作与复用更容易
python
羊村积极分子懒羊羊2 小时前
python课程三月二十九号粗略总结
开发语言·python
深圳蔓延科技2 小时前
Python算法学习分享
python