使用scikit-learn中的线性回归包对自定义数据集进行拟合

1. 导入必要的库

首先,需要导入所需的库,包括pandas用于数据处理,numpy用于数值计算,以及scikit-learn中的线性回归模型。

python 复制代码
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

2. 加载自定义数据集

假设有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。将使用pandas读取这个文件。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有两列:'feature'为特征,'target'为标签
X = data[['feature']].values  # 特征需要是二维数组
y = data['target'].values     # 标签

3. 分割数据集

为了评估模型的性能,将数据集分为训练集和测试集。

python 复制代码
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

4. 创建并训练线性回归模型

使用scikit-learn中的LinearRegression类创建线性回归模型,并使用训练集进行训练。

python 复制代码
# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

5. 进行预测并评估模型

使用测试集进行预测,并评估模型的性能。将使用均方误差(MSE)和决定系数(R²)作为评估指标。

python 复制代码
# 进行预测
y_pred = model.predict(X_test)

# 计算均方误差和决定系数
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse:.2f}')
print(f'R² Score: {r2:.2f}')

6. 可视化结果

为了更直观地了解模型的拟合效果,可以绘制散点图来显示真实值和预测值。

python 复制代码
# 可视化结果
plt.scatter(X_test, y_test, color='black', label='Actual data')
plt.plot(X_test, y_pred, color='blue', linewidth=3, label='Fitted line')

plt.xlabel('Feature')
plt.ylabel('Target')
plt.title('Linear Regression Fit')
plt.legend()
plt.show()
相关推荐
dhxhsgrx2 小时前
PYTHON训练营DAY25
java·开发语言·python
伊织code4 小时前
PyTorch API 5 - 全分片数据并行、流水线并行、概率分布
pytorch·python·ai·api·-·5
风逸hhh5 小时前
python打卡day25@浙大疏锦行
开发语言·python
魔尔助理顾问6 小时前
Flask如何读取配置信息
python·flask·bootstrap
jc_hook7 小时前
Python 接入DeepSeek
python·大模型·deepseek
chicpopoo7 小时前
Python打卡DAY25
开发语言·python
crazyme_68 小时前
深入掌握 Python 切片操作:解锁数据处理的高效密码
开发语言·python
Code_流苏9 小时前
《Python星球日记》 第69天:生成式模型(GPT 系列)
python·gpt·深度学习·机器学习·自然语言处理·transformer·生成式模型
于壮士hoho10 小时前
Python | Dashboard制作
开发语言·python
掘金-我是哪吒10 小时前
分布式微服务系统架构第131集:fastapi-python
分布式·python·微服务·系统架构·fastapi