使用scikit-learn中的线性回归包对自定义数据集进行拟合

1. 导入必要的库

首先,需要导入所需的库,包括pandas用于数据处理,numpy用于数值计算,以及scikit-learn中的线性回归模型。

python 复制代码
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

2. 加载自定义数据集

假设有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。将使用pandas读取这个文件。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有两列:'feature'为特征,'target'为标签
X = data[['feature']].values  # 特征需要是二维数组
y = data['target'].values     # 标签

3. 分割数据集

为了评估模型的性能,将数据集分为训练集和测试集。

python 复制代码
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

4. 创建并训练线性回归模型

使用scikit-learn中的LinearRegression类创建线性回归模型,并使用训练集进行训练。

python 复制代码
# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, y_train)

5. 进行预测并评估模型

使用测试集进行预测,并评估模型的性能。将使用均方误差(MSE)和决定系数(R²)作为评估指标。

python 复制代码
# 进行预测
y_pred = model.predict(X_test)

# 计算均方误差和决定系数
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse:.2f}')
print(f'R² Score: {r2:.2f}')

6. 可视化结果

为了更直观地了解模型的拟合效果,可以绘制散点图来显示真实值和预测值。

python 复制代码
# 可视化结果
plt.scatter(X_test, y_test, color='black', label='Actual data')
plt.plot(X_test, y_pred, color='blue', linewidth=3, label='Fitted line')

plt.xlabel('Feature')
plt.ylabel('Target')
plt.title('Linear Regression Fit')
plt.legend()
plt.show()
相关推荐
!chen1 小时前
Error: error:0308010C:digital envelope routines::unsupporte
python
小北方城市网1 小时前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
xiaolyuh1232 小时前
【XXL-JOB】 GLUE模式 底层实现原理
java·开发语言·前端·python·xxl-job
likuolei2 小时前
Spring AI框架完整指南
人工智能·python·spring
二哈喇子!2 小时前
PyTorch生态与昇腾平台适配:环境搭建与详细安装指南
人工智能·pytorch·python
Learner2 小时前
Python数据类型(三):列表和元组
开发语言·python
世界唯一最大变量2 小时前
用自创的算法快速解决拉姆奇数
python
leluckys2 小时前
AI- 一种快速实现MCP服务的方法
开发语言·python
写代码的【黑咖啡】2 小时前
探索 Python 中的 Vaex:高效处理大规模数据的新选择
开发语言·python
Lun3866buzha2 小时前
自动扶梯与楼梯识别_yolo11-C3k2-SCcConv改进实现
python