联想Y7000+RTX4060+i7+Ubuntu22.04运行DeepSeek开源多模态大模型Janus-Pro-1B+本地部署

直接上手搓了:

bash 复制代码
conda create -n myenv python=3.10 -y

git clone https://github.com/deepseek-ai/Janus.git

cd Janus

pip install -e .

pip install webencodings beautifulsoup4 tinycss2

pip install -e .[gradio]

pip install 'pexpect>4.3'

python demo/app_januspro.py

由于RTX4060只有8G显存,只能运行1B的模型,下面是下载模型的代码:

python 复制代码
from modelscope import snapshot_download, AutoTokenizer
from transformers import TrainingArguments, Trainer, DataCollatorForSeq2Seq, Qwen2VLForConditionalGeneration, AutoProcessor
import torch

# 在modelscope上下载Qwen2-VL模型到本地目录下
model_dir = snapshot_download("deepseek-ai/Janus-Pro-1B", cache_dir="./", revision="master")

# 使用Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained("./deepseek-ai/Janus-Pro-1B/", use_fast=False, trust_remote_code=True)
# 特别的,Qwen2-VL-2B-Instruct模型需要使用Qwen2VLForConditionalGeneration来加载
model = Qwen2VLForConditionalGeneration.from_pretrained("./deepseek-ai/Janus-Pro-1B/", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True,)
model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

修改demo/app_januspro.py中model的名称为1B。运行后用浏览器打开http://127.0.0.1:7860即可。

使用效果图:

相关推荐
deephub4 小时前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP4 小时前
BERT系列模型
人工智能·深度学习·bert
格林威5 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造
来酱何人7 小时前
实时NLP数据处理:流数据的清洗、特征提取与模型推理适配
人工智能·深度学习·分类·nlp·bert
Theodore_10227 小时前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归
Blossom.1187 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
Aurora-silas8 小时前
LLM微调尝试——MAC版
人工智能·pytorch·深度学习·macos·机器学习·语言模型·自然语言处理
XIAO·宝9 小时前
深度学习------YOLOV3
人工智能·深度学习·yolo
win4r10 小时前
🚀DeepSeek又放大招!这个OCR模型让文档识别效率倍增!本地部署+客观实测DeepSeek-OCR!OCR识别准确率97%,支持100+语言,每天处理3
llm·aigc·deepseek
apocalypsx10 小时前
深度学习-卷积神经网络基础
人工智能·深度学习·cnn