2025暑期—05神经网络-卷积神经网络

  1. 卷积神经网络实际上就是避免过拟合,就是"特征"神经网络。这个特征和卷积核相关。卷积和相关类似,有点是本质属性和输出属性的感觉。

着重注意三通道卷积

padding 上下左右、前后都要加边

池化就是解决特征过多问题,缩小1倍较多。均值池化,最大池化。

卷积是线性的,叠加激活函数解决非线性神经网络问题。

池化层和卷积层反向传播问题,对于池化层,使用最大池化可以使大多数神经元置零,减少反向传播神经元参数。

欠拟合的原因主要是网络深度不够,一般采用扩大网络规模和深度,或改进方法。

过拟合就是训练误差低,测试误差高,结果泛化及处理未知数据能力不强。调整训练算法。权重衰减及LR正则化方法。

DropOut,工厂干活时10个人一定出现分化,反映到神经网络,某些神经元会不停调正权值,非常积极,会产生振荡,还有神经元不被激活,不参与任何训练。如何改变这种情况。针对10个人,可以分成2班,形成均匀分配。每一天都随机选择5个人上班,因为人多,工作时间长,所以被选中国内的概率都是一致的,每一个神经元都会随机参与。在全连接层一般会使用暂退法则。

  1. 框架

嵌入式Tensorflow稍多,但是方向为Pytorch

tensorflow2.0 版本以上和Pytorch类似。同一个网络同一组参数最后的结果是不一样的。

pytorch 张量 一切都是 tensor 张量。神经网络就是图,图可以获得偏导。图神经网络 GNN

相关推荐
MM_MS16 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
齐齐大魔王17 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
Hcoco_me18 小时前
RNN(循环神经网络)
人工智能·rnn·深度学习
柠柠酱21 小时前
【深度学习Day5】决战 CIFAR-10:手把手教你搭建第一个“正经”的卷积神经网络 (附调参心法)
深度学习
gravity_w21 小时前
Hugging Face使用指南
人工智能·经验分享·笔记·深度学习·语言模型·nlp
Yeats_Liao1 天前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
UnderTurrets1 天前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo3641 天前
pytorch深度学习笔记13
pytorch·笔记·深度学习
高洁011 天前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
lambo mercy1 天前
无监督学习
人工智能·深度学习