单细胞-第四节 多样本数据分析,下游画图

文件在单细胞\5_GC_py\1_single_cell\2_plots.Rmd

1.细胞数量条形图

c 复制代码
rm(list = ls())
library(Seurat)
load("seu.obj.Rdata")

dat = as.data.frame(table(Idents(seu.obj)))
dat$label = paste(dat$Var1,dat$Freq,sep = ":")
head(dat)
library(ggplot2)
library(paletteer)
#View(palettes_d_names)
ggplot(dat,aes(x = Freq,fill = Var1,y = Var1))+
  scale_fill_paletteer_d("ggsci::category20_d3")+
  geom_bar(stat = "identity")+
  theme_bw()+
  geom_text(aes(x = 0,label = label),hjust = 0)+
  theme(axis.text.y = element_blank(),   # 隐藏纵坐标刻度文字
        axis.ticks.y = element_blank(),
        axis.title.y = element_blank())  # 隐藏纵坐标刻度线

2.细胞比例条形图

c 复制代码
seu.obj$seurat_annotation = seu.obj@active.ident
ggplot(seu.obj@meta.data,aes(orig.ident,fill = seurat_annotation))+
  geom_bar(position = "fill", alpha = 0.9,width = 0.5)+
  scale_fill_paletteer_d("ggsci::category20_d3")+
  theme_classic()+
  coord_flip()+
  coord_fixed(ratio = 4) #纵轴长度是横轴的4倍

3.小提琴图

c 复制代码
load("markers.Rdata")
library(tidyverse)
g = allmarkers %>% group_by(cluster) %>% top_n(1,wt = avg_log2FC) %>% pull(gene)

m = as.matrix(seu.obj@assays$RNA@layers$data)
rownames(m) = Features(seu.obj)
colnames(m) = Cells(seu.obj)
vln.df <- m %>%
  t() %>%
  as.data.frame()%>%
  select(g) %>% 
  rownames_to_column("CB") %>% 
  mutate(cluster = seu.obj$seurat_annotation)%>%
  pivot_longer(cols = 2:(ncol(.)-1),#宽边长
               names_to = "gene",
               values_to = "exp") %>% 
  mutate(gene = factor(gene,levels = g))
head(vln.df)
c 复制代码
# 自定义颜色
library(paletteer)
my_color = paletteer_d(`"ggsci::category20_d3"`)
my_color = colorRampPalette(my_color)(length(unique(vln.df$cluster)))
# 画图
p1 <- ggplot(vln.df,aes(exp,cluster),color=factor(cluster))+
  geom_violin(aes(fill=cluster),scale = "width")+
  scale_fill_manual(values = my_color)+
  facet_grid(.~gene,scales = "free_y", switch = "x")+
  scale_x_continuous(expand = c(0,0),position = "top")+
  theme_bw()+
  theme(
    panel.grid = element_blank(),
    axis.title.x.top = element_blank(),
    #axis.ticks.x.bottom = element_blank(),
    axis.text.x.top= element_text(hjust = 1,vjust = NULL,color = "black",size = 7),
    #axis.title.y.left = element_blank(),
    #axis.ticks.y.left = element_blank(),
    #axis.text.y.left = element_blank(),
    legend.position = "none",
    panel.spacing.y = unit(0, "cm"),
    strip.text.y = element_text(angle=0,size = 14,hjust = 0),
    strip.background.y = element_blank()
  )
p1

4.气泡图

c 复制代码
g = allmarkers %>% group_by(cluster) %>% top_n(5,wt = avg_log2FC) %>% pull(gene) %>% unique()
DotPlot(seu.obj,features = g,cols = "RdYlBu")+RotatedAxis()

5.GC基因韦恩图

c 复制代码
f = read.delim("gcgene.txt",header = F)
k = allmarkers$p_val_adj<0.05 & allmarkers$avg_log2FC>2
table(k)
g = intersect(allmarkers$gene[k],f$V1)
save(g,file = "g.Rdata")
library(tinyarray)
draw_venn(list(pyroptosis = f$V1,
               marker = unique(allmarkers$gene[k])),"")
ggsave("venn.png")
c 复制代码
m = as.matrix(seu.obj@assays$RNA@layers$data)
rownames(m) = Features(seu.obj)
colnames(m) = Cells(seu.obj)
m = m[g,]
ac = data.frame(row.names = colnames(m),
                celltype = Idents(seu.obj))
library(dplyr)
ac = arrange(ac,celltype)
m = m[,rownames(ac)]
pheatmap::pheatmap(m,show_colnames = F,cluster_cols = F,cluster_rows = F,scale = "row",breaks = seq(-1.6,3,length.out = 100),annotation_col = ac)

6.差异焦亡基因富集分析

c 复制代码
e = quick_enrich(g,destdir = tempdir())
e[[4]]+e[[3]]
相关推荐
2***57422 小时前
Java数据分析实战
java·python·数据分析
paperxie_xiexuo2 小时前
从研究问题到分析初稿:深度解析PaperXie AI科研工具中数据分析模块在学术写作场景下的辅助逻辑与技术实现路径
人工智能·数据挖掘·数据分析
say_fall3 小时前
WinAPI 极简教程:超简单的 Windows 接口入门
c语言·windows
IT·小灰灰4 小时前
基于Python的机器学习/数据分析环境搭建完全指南
开发语言·人工智能·python·算法·机器学习·数据分析
Chef_Chen4 小时前
数据科学每日总结--Day26--数据挖掘
人工智能·数据挖掘
晨枫阳5 小时前
不同语言数组详解
linux·服务器·windows
U***e636 小时前
JavaScript数据分析
开发语言·javascript·数据分析
Microsoft Word6 小时前
商务数据分析与可视化
数据挖掘·数据分析
s***4536 小时前
【RabbitMQ】超详细Windows系统下RabbitMQ的安装配置
windows·分布式·rabbitmq
Q26433650237 小时前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计