新一代搜索引擎,是 ES 的15倍?

Manticore Search介绍

Manticore Search 是一个使用 C++ 开发的高性能搜索引擎,创建于 2017 年,其前身是 Sphinx Search 。Manticore Search 充分利用了 Sphinx,显着改进了它的功能,修复了数百个错误,几乎完全重写了代码并保持开源。这一切使 Manticore Search 成为一个现代,快速,轻量级和功能齐全的数据库,具有出色的全文搜索功能。

Manticore Search目前在GitHub收获3.7k star,拥有大批忠实用户。同时开源者在GitHub介绍中明确说明了该项目是是Elasticsearch的良好替代品,在不久的将来就会取代ELK中的E。

img

同时,来自 MS 官方的测试表明 Manticore Search 性能比 ElasticSearch 有质的提升:

img

在一定的场景中,Manticore 比 Elasticsearch 快 15 倍!完整的测评结果,可以参考:

优势

它与其他解决方案的区别在于:

  • 它非常快,因此比其他替代方案更具成本效益。例如,Manticore:

  • 对于小型数据,比MySQL快182倍(可重现)

  • 对于日志分析,比Elasticsearch快29倍(可重现)

  • 对于小型数据集,比Elasticsearch快15倍(可重现)

  • 对于中等大小的数据,比Elasticsearch快5倍(可重现)

  • 对于大型数据,比Elasticsearch快4倍(可重现)

  • 在单个服务器上进行数据导入时,最大吞吐量比Elasticsearch快最多2倍(可重现)

  • 由于其现代的多线程架构和高效的查询并行化能力,Manticore能够充分利用所有CPU核心,以实现最快的响应时间。

  • 强大而快速的全文搜索功能能够无缝地处理小型和大型数据集。

  • 针对小、中、大型数据集提供逐行存储。

  • 对于更大的数据集,Manticore通过Manticore Columnar Library提供列存储支持,可以处理无法适合内存的数据集。

  • 自动创建高效的二级索引,节省时间和精力。

  • 成本优化的查询优化器可优化搜索查询以实现最佳性能。

  • Manticore是基于SQL的,使用SQL作为其本机语法,并与MySQL协议兼容,使您可以使用首选的MySQL客户端。

  • 通过PHP、Python、JavaScript、Java、Elixir和Go等客户端,与Manticore Search的集成变得简单。

  • Manticore还提供了一种编程HTTP JSON协议,用于更多样化的数据和模式管理。

  • Manticore Search使用C++构建,启动快速,内存使用最少,低级别优化有助于其卓越性能。

  • 实时插入,新添加的文档立即可访问。

  • 提供互动课程,使学习轻松愉快。

  • Manticore还拥有内置的复制和负载均衡功能,增加了可靠性。

  • 可以轻松地从MySQL、PostgreSQL、ODBC、xml和csv等来源同步数据。

  • 虽然不完全符合ACID,但Manticore仍支持事务和binlog以确保安全写入。

  • 内置工具和SQL命令可轻松备份和恢复数据。

Craigslist、Socialgist、PubChem、Rozetka和许多其他公司使用 Manticore 进行高效搜索和流过滤。

使用

Docker 镜像可在Docker Hub上获取:

要在 Docker 中试验 Manticore Search,只需运行:

复制代码
docker run -e EXTRA=1 --name manticore --rm -d manticoresearch/manticore && until docker logs manticore 2>&1 | grep -q "accepting connections"; do sleep 1; done && docker exec -it manticore mysql && docker stop manticore

之后,可以进行其他操作,例如创建表、添加数据并运行搜索:

复制代码
create table movies(title text, year int) morphology='stem_en' html_strip='1' stopwords='en';

insert into movies(title, year) values ('The Seven Samurai', 1954), ('Bonnie and Clyde', 1954), ('Reservoir Dogs', 1992), ('Airplane!', 1980), ('Raging Bull', 1980), ('Groundhog Day', 1993), ('<a href="http://google.com/">Jurassic Park</a>', 1993), ('Ferris Bueller\'s Day Off', 1986);

select highlight(), year from movies where match('the dog');

select highlight(), year from movies where match('days') facet year;

select * from movies where match('google');

完整文档和开源代码,可以移步:

来源:github.com/manticoresoftware/manticoresearch

---END---

相关推荐
D愿你归来仍是少年32 分钟前
使用 PySpark 批量清理 Hive 表历史分区
大数据·数据仓库·hive·spark
End9281 小时前
Hadoop的三大结构及其作用?
大数据·hadoop·分布式
chat2tomorrow3 小时前
数据仓库 vs 数据湖:架构、应用场景与技术差异全解析
大数据·数据仓库·低代码·架构·数据湖·sql2api
塔能物联运维3 小时前
双轮驱动能源革命:能源互联网与分布式能源赋能工厂能效跃迁
大数据·运维
-曾牛4 小时前
Git Flow
大数据·git·学习·elasticsearch·个人开发
461K.5 小时前
spark与hadoop的区别
大数据·运维·hadoop·分布式·spark·intellij-idea
Zfox_5 小时前
Git 进阶之路:高效协作之分支管理
大数据·linux·运维·c++·git·elasticsearch
lilye665 小时前
精益数据分析(11/126):辨别虚荣指标,挖掘数据真价值
大数据·人工智能·数据分析
白鲸开源5 小时前
万字长文 | Apache SeaTunnel 分离集群模式部署 K8s 集群实践
大数据
浩浩测试一下6 小时前
信息收集之hack用的网络空间搜索引擎
android·网络·安全·web安全·搜索引擎·网络安全·安全架构