新一代搜索引擎,是 ES 的15倍?

Manticore Search介绍

Manticore Search 是一个使用 C++ 开发的高性能搜索引擎,创建于 2017 年,其前身是 Sphinx Search 。Manticore Search 充分利用了 Sphinx,显着改进了它的功能,修复了数百个错误,几乎完全重写了代码并保持开源。这一切使 Manticore Search 成为一个现代,快速,轻量级和功能齐全的数据库,具有出色的全文搜索功能。

Manticore Search目前在GitHub收获3.7k star,拥有大批忠实用户。同时开源者在GitHub介绍中明确说明了该项目是是Elasticsearch的良好替代品,在不久的将来就会取代ELK中的E。

img

同时,来自 MS 官方的测试表明 Manticore Search 性能比 ElasticSearch 有质的提升:

img

在一定的场景中,Manticore 比 Elasticsearch 快 15 倍!完整的测评结果,可以参考:

优势

它与其他解决方案的区别在于:

  • 它非常快,因此比其他替代方案更具成本效益。例如,Manticore:

  • 对于小型数据,比MySQL快182倍(可重现)

  • 对于日志分析,比Elasticsearch快29倍(可重现)

  • 对于小型数据集,比Elasticsearch快15倍(可重现)

  • 对于中等大小的数据,比Elasticsearch快5倍(可重现)

  • 对于大型数据,比Elasticsearch快4倍(可重现)

  • 在单个服务器上进行数据导入时,最大吞吐量比Elasticsearch快最多2倍(可重现)

  • 由于其现代的多线程架构和高效的查询并行化能力,Manticore能够充分利用所有CPU核心,以实现最快的响应时间。

  • 强大而快速的全文搜索功能能够无缝地处理小型和大型数据集。

  • 针对小、中、大型数据集提供逐行存储。

  • 对于更大的数据集,Manticore通过Manticore Columnar Library提供列存储支持,可以处理无法适合内存的数据集。

  • 自动创建高效的二级索引,节省时间和精力。

  • 成本优化的查询优化器可优化搜索查询以实现最佳性能。

  • Manticore是基于SQL的,使用SQL作为其本机语法,并与MySQL协议兼容,使您可以使用首选的MySQL客户端。

  • 通过PHP、Python、JavaScript、Java、Elixir和Go等客户端,与Manticore Search的集成变得简单。

  • Manticore还提供了一种编程HTTP JSON协议,用于更多样化的数据和模式管理。

  • Manticore Search使用C++构建,启动快速,内存使用最少,低级别优化有助于其卓越性能。

  • 实时插入,新添加的文档立即可访问。

  • 提供互动课程,使学习轻松愉快。

  • Manticore还拥有内置的复制和负载均衡功能,增加了可靠性。

  • 可以轻松地从MySQL、PostgreSQL、ODBC、xml和csv等来源同步数据。

  • 虽然不完全符合ACID,但Manticore仍支持事务和binlog以确保安全写入。

  • 内置工具和SQL命令可轻松备份和恢复数据。

Craigslist、Socialgist、PubChem、Rozetka和许多其他公司使用 Manticore 进行高效搜索和流过滤。

使用

Docker 镜像可在Docker Hub上获取:

要在 Docker 中试验 Manticore Search,只需运行:

docker run -e EXTRA=1 --name manticore --rm -d manticoresearch/manticore && until docker logs manticore 2>&1 | grep -q "accepting connections"; do sleep 1; done && docker exec -it manticore mysql && docker stop manticore

之后,可以进行其他操作,例如创建表、添加数据并运行搜索:

create table movies(title text, year int) morphology='stem_en' html_strip='1' stopwords='en';

insert into movies(title, year) values ('The Seven Samurai', 1954), ('Bonnie and Clyde', 1954), ('Reservoir Dogs', 1992), ('Airplane!', 1980), ('Raging Bull', 1980), ('Groundhog Day', 1993), ('<a href="http://google.com/">Jurassic Park</a>', 1993), ('Ferris Bueller\'s Day Off', 1986);

select highlight(), year from movies where match('the dog');

select highlight(), year from movies where match('days') facet year;

select * from movies where match('google');

完整文档和开源代码,可以移步:

来源:github.com/manticoresoftware/manticoresearch

---END---

相关推荐
说私域15 分钟前
基于开源AI大模型的精准零售模式创新——融合AI智能名片与S2B2C商城小程序源码的“人工智能 + 线下零售”路径探索
人工智能·搜索引擎·小程序·开源·零售
24k小善5 小时前
flink集成tidb cdc
大数据·flink·tidb
郝开5 小时前
ElasticSearch 分词器介绍及测试:Standard(标准分词器)、English(英文分词器)、Chinese(中文分词器)、IK(IK 分词器)
elasticsearch·中文分词·ik·ik analyzer
kngines7 小时前
【实战ES】实战 Elasticsearch:快速上手与深度实践-3.2.3 案例:新闻搜索引擎的相关性优化
大数据·elasticsearch·搜索引擎
秦南北7 小时前
国内领先的宠物类电商代运营公司品融电商
大数据·人工智能·电商
problc9 小时前
Manus AI 全球首款通用型 Agent,中国制造
大数据·人工智能·制造
*星星之火*12 小时前
【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计
大数据·架构·flink
黑客KKKing13 小时前
Refreshtoken 前端 安全 前端安全方面
大数据·前端·网络·安全·web安全
永洪科技13 小时前
共绘智慧升级,看永洪科技助力由由集团起航智慧征途
大数据·数据分析·数据可视化·bi
好记性+烂笔头13 小时前
Hadoop八股
大数据·hadoop·分布式