DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力

论文链接:

[2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

实在太长,自行扔到 Model 里,去翻译去提问吧。

工作原理:

主要技术,就是训练出一些专有用途小模型,来帮助大模型训练。 主要技术:

1. 强化学习 (RL)

核心是强化学习技术,像训练小狗一样,当模型做出正确的推理步骤或得到正确的结果时,就会获得奖励,给 <think> </think> 标记;否则受到惩罚。 通过不断地学习和调整,模型的推理能力就越来越强。 强化学习过程分为多个阶段,包括直接在基础模型上进行强化学习 (DeepSeek-R1-Zero),以及在加入少量人工整理的数据后进行强化学习。

  1. 冷启动数据

为了让模型更"听话",在 DeepSeek-R1-Zero 的基础上加入了一些人工整理的数据,并进行多阶段训练。 这些数据可以帮助模型更好地理解人类的语言和思维方式,从而提高推理的准确性和可读性。

  1. 多阶段训练

训练过程分为多个阶段,包括冷启动阶段、推理导向的强化学习阶段、拒绝采样和监督微调阶段,以及针对所有场景的强化学习阶段。 每个阶段都有不同的目标和侧重点,从而保证模型的推理能力和泛化能力都能得到提升。

  1. 知识蒸馏

DeepSeek-R1 生成大量的训练数据,然后用这些数据来训练 smaller models。可以显著提高 smaller models 的推理性能,降低计算成本。

相关推荐
kaizq6 分钟前
大语言模型典型本地搭建及其应用
人工智能·ollama·cherry studio·文本对话聊天·知识库/代码库·mcp服务编制·大语言模型llm本地应用
wenzhangli79 分钟前
2025软件行业寒冬突围:破解AI编程冲击与项目制困局,一拖三闭环方案成破局关键
人工智能·ai编程
汽车仪器仪表相关领域11 分钟前
全自动化精准检测,赋能高效年检——NHD-6108全自动远、近光检测仪项目实战分享
大数据·人工智能·功能测试·算法·安全·自动化·压力测试
夜雨深秋来13 分钟前
都2026年了你还不知道AI工程化!
人工智能·代码规范
●VON15 分钟前
AI 伦理治理实操指南:从原则到生产线
人工智能
星浩AI22 分钟前
Google 官方发布:让你的 AI 编程助手"边写、边看、边调",像人类开发者一样工作
人工智能·后端·开源
Codebee44 分钟前
SkillFlow:回归本质的AI能力流程管控
人工智能
巫山老妖1 小时前
2026 年 AI 趋势深度研究报告
人工智能
CodeLove·逻辑情感实验室1 小时前
深度解析:当 NLP 试图解构爱情——情感计算(Affective Computing)的伦理边界与技术瓶颈
人工智能·深度学习·自然语言处理·赛朋克
少林码僧2 小时前
2.9 字段分箱技术详解:连续变量离散化,提升模型效果的关键步骤
人工智能·ai·数据分析·大模型