DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力

论文链接:

[2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

实在太长,自行扔到 Model 里,去翻译去提问吧。

工作原理:

主要技术,就是训练出一些专有用途小模型,来帮助大模型训练。 主要技术:

1. 强化学习 (RL)

核心是强化学习技术,像训练小狗一样,当模型做出正确的推理步骤或得到正确的结果时,就会获得奖励,给 <think> </think> 标记;否则受到惩罚。 通过不断地学习和调整,模型的推理能力就越来越强。 强化学习过程分为多个阶段,包括直接在基础模型上进行强化学习 (DeepSeek-R1-Zero),以及在加入少量人工整理的数据后进行强化学习。

  1. 冷启动数据

为了让模型更"听话",在 DeepSeek-R1-Zero 的基础上加入了一些人工整理的数据,并进行多阶段训练。 这些数据可以帮助模型更好地理解人类的语言和思维方式,从而提高推理的准确性和可读性。

  1. 多阶段训练

训练过程分为多个阶段,包括冷启动阶段、推理导向的强化学习阶段、拒绝采样和监督微调阶段,以及针对所有场景的强化学习阶段。 每个阶段都有不同的目标和侧重点,从而保证模型的推理能力和泛化能力都能得到提升。

  1. 知识蒸馏

DeepSeek-R1 生成大量的训练数据,然后用这些数据来训练 smaller models。可以显著提高 smaller models 的推理性能,降低计算成本。

相关推荐
一个处女座的程序猿几秒前
AGI之Multi-Agent之Moltbook:《The Anatomy of the Moltbook Social Graph》翻译与解读
人工智能·microsoft·multi-agent·moltbook
hans汉斯几秒前
国产生成式人工智能解决物理问题能力研究——以“智谱AI”、“讯飞星火认知大模型”、“天工”、“360智脑”、“文心一言”为例
大数据·人工智能·算法·aigc·文心一言·汉斯出版社·天工
这是个栗子1 分钟前
AI辅助编程(一) - ChatGPT
前端·vue.js·人工智能·chatgpt
发哥来了3 分钟前
主流AI视频生成商用方案选型评测:关键能力与成本效益分析
大数据·人工智能·音视频
机器学习之心6 分钟前
金融时间序列预测全流程框架:从SHAP特征选择到智能算法优化深度学习预测模型,核心三章实验已完成,尚未发表,期待有缘人!
人工智能·深度学习·金融
CoderJia程序员甲7 分钟前
GitHub 热榜项目 - 日榜(2026-02-01)
人工智能·ai·大模型·github·ai教程
渡我白衣10 分钟前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
新缸中之脑12 分钟前
将CodeBERTa压缩到10KB以下
人工智能
Faker66363aaa14 分钟前
鲶鱼目标检测与识别:基于fovea_r50_fpn_gn-head-align模型的COCO数据集训练_1
人工智能·目标检测·计算机视觉
【赫兹威客】浩哥15 分钟前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习