DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力

论文链接:

[2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

实在太长,自行扔到 Model 里,去翻译去提问吧。

工作原理:

主要技术,就是训练出一些专有用途小模型,来帮助大模型训练。 主要技术:

1. 强化学习 (RL)

核心是强化学习技术,像训练小狗一样,当模型做出正确的推理步骤或得到正确的结果时,就会获得奖励,给 <think> </think> 标记;否则受到惩罚。 通过不断地学习和调整,模型的推理能力就越来越强。 强化学习过程分为多个阶段,包括直接在基础模型上进行强化学习 (DeepSeek-R1-Zero),以及在加入少量人工整理的数据后进行强化学习。

  1. 冷启动数据

为了让模型更"听话",在 DeepSeek-R1-Zero 的基础上加入了一些人工整理的数据,并进行多阶段训练。 这些数据可以帮助模型更好地理解人类的语言和思维方式,从而提高推理的准确性和可读性。

  1. 多阶段训练

训练过程分为多个阶段,包括冷启动阶段、推理导向的强化学习阶段、拒绝采样和监督微调阶段,以及针对所有场景的强化学习阶段。 每个阶段都有不同的目标和侧重点,从而保证模型的推理能力和泛化能力都能得到提升。

  1. 知识蒸馏

DeepSeek-R1 生成大量的训练数据,然后用这些数据来训练 smaller models。可以显著提高 smaller models 的推理性能,降低计算成本。

相关推荐
JT85839616 分钟前
AI GEO 优化能否快速提升网站在搜索引擎的排名?
人工智能·搜索引擎
幂律智能18 分钟前
吾律——让普惠法律服务走进生活
人工智能·经验分享
IT_陈寒23 分钟前
Java性能优化:从这8个关键指标开始,让你的应用提速50%
前端·人工智能·后端
yzx99101327 分钟前
构建未来:深度学习、嵌入式与安卓开发的融合创新之路
android·人工智能·深度学习
非门由也38 分钟前
《sklearn机器学习——特征提取》
人工智能·机器学习·sklearn
机器学习之心2 小时前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER2 小时前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao2 小时前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达
idealmu3 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii3 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉