玩转大语言模型——使用langchain和Ollama本地部署大语言模型

系列文章目录

玩转大语言模型------使用langchain和Ollama本地部署大语言模型
玩转大语言模型------ollama导入huggingface下载的模型
玩转大语言模型------langchain调用ollama视觉多模态语言模型
玩转大语言模型------使用GraphRAG+Ollama构建知识图谱
玩转大语言模型------完美解决GraphRAG构建的知识图谱全为英文的问题
玩转大语言模型------配置图数据库Neo4j(含apoc插件)并导入GraphRAG生成的知识图谱
玩转大语言模型------本地部署带聊天界面deepseek R1的小白教程


文章目录


前言

Ollama 是一个开源的大型语言模型服务工具,旨在简化在本地运行大语言模型的过程,降低使用大语言模型的门槛。用户可以在自己的设备上运行模型,无需依赖云服务或远程服务器,保护了数据隐私。支持 Windows、macOS 和 Linux 等多种操作系统,方便不同用户安装使用。在本篇中将介绍Windows下使用Ollama进行本地大模型的部署。


下载安装Ollama

Ollama官网:https://ollama.com/

点击下载,选择符合自己系统的版本,点击下载

下载后按照提示安装即可

安装模型

回到官网,点击左上角的Models

点击后可以看到会有众多支持的模型

在本篇中笔者将使用Qwen2.5:7b,可以在搜索栏中搜索Qwen

在左侧可以选择模型大小,复制右侧的命令,打开命令行执行就可以直接下载并运行模型了。如果已经下载过,使用这个命令不会重复下载。如果只下载不运行可以使用命令ollama pull qwen2.5

测试模型

使用终端调用

打开命令行,执行命令

bash 复制代码
ollama run qwen2.5:7b

随后就可以在命令行交互式使用大语言模型了

使用request直接调用

由于ollama支持OpenAI接口的调用,所以也可以像直接调用OpenAI一样,使用request方式调用,调用方式只要是ollama符合提供的API即可,API可以参考:https://ollama.readthedocs.io/api/

例如使用这一接口

复制代码
curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt": "Why is the sky blue?",
  "stream": false
}'

可以使用requests调用的方式如下(下面的代码中改成了我们需要的内容)

python 复制代码
import requests

# 定义请求的URL
url = 'http://localhost:11434/api/generate'

# 定义要发送的数据
data = {
    "model": "qwen2.5:7b",
    "prompt": "你好",
    "stream": False
}

# 发送POST请求,使用json参数自动处理JSON数据
response = requests.post(url, json=data)

# 检查响应状态码
if response.status_code == 200:
    # 解析并打印响应内容
    result = response.json()  # 假设服务器返回的是JSON格式的数据
    print(result)
    print(result['response'])
else:
    # 打印错误信息
    print(f"请求失败,状态码:{response.status_code}")
    print(response.text)  # 打印服务器返回的原始文本(可能是错误信息)

上述代码中的data字典中prompt对应的值就是我们所提的问题,在这里以你好为例,下同。

使用langchain调用Ollama接口

langchain也是一个常用的大语言模型开发框架,其中提供了关于ollama调用的接口,在实例化参数中temperature代表的是生成回答的随机程度,取值在0~1,越大随机程度越高。如果是本地配置的ollamaurl_base参数可以省略。

python 复制代码
from langchain_ollama import ChatOllama

llm = ChatOllama(
    temperature=0,
    model="qwen2.5:7b",
    url_base="http://localhost:11434/v1/",
)
ans = llm.invoke("你好")
print(ans)
print(ans.content)

使用langchain调用OpenAI接口

上边也提到了ollama会提供OpenAI的接口,所以也可以使用langchain为OpenAI提供的调用接口。不同的是openai_api_base要改为ollama地址http://localhost:11434/v1/openai_api_key可以为任意值,但不能为中文也不能为空。

python 复制代码
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    temperature=0,
    model="qwen2.5:7b",
    openai_api_base="http://localhost:11434/v1/",
    openai_api_key="anything"
)
ans = llm.invoke("你好")
print(ans)
print(ans.content)
相关推荐
Akamai中国9 分钟前
AI需要防火墙,云计算需要重新构想
人工智能·云计算·云服务
liupengfei-iot19 分钟前
AutoGLM2.0背后的云手机和虚拟机分析(非使用案例)
人工智能·智能手机·ai编程
runfarther31 分钟前
uv与conda的区别及选择指南
语言模型·conda·ai编程·uv
BB学长36 分钟前
流固耦合|01流固耦合分类
人工智能·算法
HeteroCat38 分钟前
提示工程你玩对了吗,这5个高阶玩法...
人工智能
广州智造1 小时前
EPLAN教程:流体工程
开发语言·人工智能·python·算法·软件工程·软件构建
轻松Ai享生活1 小时前
Week 2 – CUDA Programming Model(超详细教程)
人工智能
wait a minutes1 小时前
【自动驾驶】8月 端到端自动驾驶算法论文(arxiv20250819)
人工智能·机器学习·自动驾驶
HuggingFace1 小时前
HF Papers 直播| 多模态专场
人工智能
聚客AI1 小时前
深度拆解AI大模型从训练框架、推理优化到市场趋势与基础设施挑战
图像处理·人工智能·pytorch·深度学习·机器学习·自然语言处理·transformer