自定义数据集,使用scikit-learn 中K均值包 进行聚类

1. 引言

K均值聚类是一种无监督学习方法,用于将数据集分为多个簇。通过计算数据点之间的距离并将它们分配到最近的簇中心,K均值算法可以帮助我们发现数据中的自然结构。

2. 数据集创建

首先,我们使用numpy创建一个自定义的二维数据集:

复制代码
import numpy as np

# 创建一个简单的二维数据集
X = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
3. 导入K均值并进行聚类

接下来,我们使用scikit-learn中的K均值算法进行聚类。

复制代码
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 使用K均值聚类,设定簇的数量为2
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)

# 获取簇的中心和标签
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
4. 可视化结果

为了更好地理解聚类结果,我们可以使用matplotlib来可视化数据点和簇的中心。

复制代码
# 绘制数据点和簇的中心
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')

# 标出簇的中心
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
plt.show()
5. 总结

通过K均值聚类,我们成功地将数据集分为两个簇,并通过可视化方式直观展示了聚类结果。K均值算法的核心思想是通过计算点与簇中心的距离进行分组,并不断迭代优化簇的中心位置。

相关推荐
铁手飞鹰2 天前
[深度学习]常用的库与操作
人工智能·pytorch·python·深度学习·numpy·scikit-learn·matplotlib
不懒不懒3 天前
【机器学习:下采样 VS 过采样——逻辑回归在信用卡欺诈检测中的实践】
python·numpy·scikit-learn·matplotlib·pip·futurewarning
Loo国昌3 天前
【大模型应用开发】第二阶段:语义理解应用:文本分类与聚类 (Text Classification & Clustering)
人工智能·分类·聚类
java1234_小锋4 天前
分享一套优质的基于Python的房屋数据分析预测系统(scikit-learn机器学习+Flask)
python·数据分析·scikit-learn
郝学胜-神的一滴4 天前
基于30年教学沉淀的清华大学AI通识经典:《人工智能的底层逻辑》
人工智能·程序人生·机器学习·scikit-learn·sklearn
青春不朽5124 天前
Scikit-learn 入门指南
python·机器学习·scikit-learn
龙腾AI白云4 天前
多模态融合驱动下的具身学习机制研究
深度学习·数据挖掘·scikit-learn·知识图谱·fastapi
编码小哥6 天前
OpenCV图像滤波技术详解:从均值滤波到双边滤波
人工智能·opencv·均值算法
葱明撅腚7 天前
利用Python挖掘城市数据
python·算法·gis·聚类
龙腾AI白云7 天前
【基于Transformer的人工智能模型搭建与fine-tuning】
scikit-learn·fastapi