自定义数据集,使用scikit-learn 中K均值包 进行聚类

1. 引言

K均值聚类是一种无监督学习方法,用于将数据集分为多个簇。通过计算数据点之间的距离并将它们分配到最近的簇中心,K均值算法可以帮助我们发现数据中的自然结构。

2. 数据集创建

首先,我们使用numpy创建一个自定义的二维数据集:

复制代码
import numpy as np

# 创建一个简单的二维数据集
X = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
3. 导入K均值并进行聚类

接下来,我们使用scikit-learn中的K均值算法进行聚类。

复制代码
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 使用K均值聚类,设定簇的数量为2
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)

# 获取簇的中心和标签
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
4. 可视化结果

为了更好地理解聚类结果,我们可以使用matplotlib来可视化数据点和簇的中心。

复制代码
# 绘制数据点和簇的中心
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')

# 标出簇的中心
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
plt.show()
5. 总结

通过K均值聚类,我们成功地将数据集分为两个簇,并通过可视化方式直观展示了聚类结果。K均值算法的核心思想是通过计算点与簇中心的距离进行分组,并不断迭代优化簇的中心位置。

相关推荐
民乐团扒谱机16 小时前
【微实验】OPTICS算法:让密度不均的数据“各归其类”
人工智能·算法·机器学习·支持向量机·matlab·聚类·optics
Keep__Fighting18 小时前
【机器学习:K-Means】
人工智能·python·算法·机器学习·kmeans·聚类·sklearn
Hcoco_me18 小时前
大模型面试题16:SVM 算法详解及实践
算法·数据挖掘·聚类
Hcoco_me1 天前
大模型面试题14:K-means聚类算法全解析(通用场景+深度拓展)
算法·kmeans·聚类
Hcoco_me1 天前
大模型面试题15:DBSCAN聚类算法:步骤、缺陷及改进方向
算法·数据挖掘·聚类
黑客思维者2 天前
Scikit-learn四大分类算法实战:逻辑回归、SVM、决策树、随机森林
分类·逻辑回归·scikit-learn
bulingg3 天前
聚类方法(kmeans,DBSCAN,层次聚类,GMM,EM算法)
算法·kmeans·聚类
Keep__Fighting3 天前
【机器学习:决策树】
人工智能·算法·决策树·机器学习·scikit-learn
民乐团扒谱机3 天前
【微实验】大规模网络的社区检测Clauset–Newman–Moore聚类算法(附完整MATLAB代码)
算法·matlab·聚类·聚类算法·cnm·语义
Jerryhut4 天前
sklearn函数总结六——特征降维 压缩数据 - 特征提取(PCA&LDA)
人工智能·算法·机器学习·scikit-learn·sklearn