自定义数据集,使用scikit-learn 中K均值包 进行聚类

1. 引言

K均值聚类是一种无监督学习方法,用于将数据集分为多个簇。通过计算数据点之间的距离并将它们分配到最近的簇中心,K均值算法可以帮助我们发现数据中的自然结构。

2. 数据集创建

首先,我们使用numpy创建一个自定义的二维数据集:

复制代码
import numpy as np

# 创建一个简单的二维数据集
X = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
3. 导入K均值并进行聚类

接下来,我们使用scikit-learn中的K均值算法进行聚类。

复制代码
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 使用K均值聚类,设定簇的数量为2
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)

# 获取簇的中心和标签
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
4. 可视化结果

为了更好地理解聚类结果,我们可以使用matplotlib来可视化数据点和簇的中心。

复制代码
# 绘制数据点和簇的中心
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')

# 标出簇的中心
plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
plt.show()
5. 总结

通过K均值聚类,我们成功地将数据集分为两个簇,并通过可视化方式直观展示了聚类结果。K均值算法的核心思想是通过计算点与簇中心的距离进行分组,并不断迭代优化簇的中心位置。

相关推荐
编码小哥12 小时前
OpenCV图像滤波技术详解:从均值滤波到双边滤波
人工智能·opencv·均值算法
葱明撅腚2 天前
利用Python挖掘城市数据
python·算法·gis·聚类
龙腾AI白云2 天前
【基于Transformer的人工智能模型搭建与fine-tuning】
scikit-learn·fastapi
Testopia3 天前
AI编程实例 - 爆款文章预测:K-Means聚类与分类算法的实践
人工智能·分类·kmeans·ai编程·聚类
强化试剂瓶4 天前
全面掌握Ergosterol-PEG-Biotin,麦角甾醇PEG生物素的使用与注意事项
python·scrapy·flask·scikit-learn·pyqt
郝学胜-神的一滴4 天前
特征选择利器:深入理解SelectKBest与单变量特征选择
人工智能·python·程序人生·机器学习·数据分析·scikit-learn·sklearn
流㶡5 天前
scikit-learn之KNN算法实战鸢尾花分类
python·算法·scikit-learn·knn
passxgx6 天前
12.1 均值、方差与概率
算法·均值算法·概率论
李昊哲小课7 天前
机器学习核心概念与经典算法全解析
人工智能·算法·机器学习·scikit-learn
醉舞经阁半卷书17 天前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn