机器学习--2.多元线性回归

多元线性回归

1、基本概念

1.1、连续值

1.2、离散值

1.3、简单线性回归

1.4、最优解

1.5、多元线性回归

2、正规方程

2.1、最小二乘法

2.2、多元一次方程举例

2.3、矩阵转置公式与求导公式

2.4、推导正规方程0的解

2.5、凸函数判定

成年人最大的自律就是:克制自己去纠正别人的欲望。俗话说人教人教不会,事儿教人一次就会。希望呢,你赶紧进入社会,经历经历一些困难和挫折,然后这样的话你才能够快速的成长,是吧?事教人一次就会。

好,那么我们继续看咱们的正规方程。咱们说咱们通过最小的乘法求解出了正规方程,这个特别有用,对不对。看正规方程现在是不是就可以帮助我们去求解?这个多元一次方程呀。好,那么。咱们的最小的乘法之所以能够求解。

发现啊,这个最小二乘法它的公式呢,是HC塔Xi-Y,是不是带了一个平方,对不对啊,它带了一个平方,那么像这样的方程,如果咱们画图画出来。

是不是,你看它是不是一个抛物线形式啊,画图画出来的话,咱们给一个红色啊,啊就是这个方程,它大概是这样。

啊,画图画出来,那么它大概呢,就是一个这样的形式。它是抛物线形式的。

那现在呢,咱们就能够看到,但凡是这样的方程,那你想一定忽悠。

最小值对不对是吧,因为你看这个抛物线是吧,下面肯定有一个最小值对吧,那这个时候呢,咱们。咱们就要这个介绍一下这个凸函数这个概念啊。那什么样的函数是凸函数呢?咱们先看。那你看左边这个是凸函数还是右边这个是凸函数呀,那么很多根据直观是吧,你自己的这个知识,你肯定会判定左边这个是猪还是猪,在这里我要告诉你,右边这个是主函数。啊,因为凸函数这个概念,它来自欧美,来自美国。我们就把它翻译成了凸函数,其实人家美国是吧。呃,在进行文件说明的时候,人家还有一个词叫下凸,然后中国人翻译就把这个下给去掉了。所以说这个。咱看到的这个图函数,机器学习的图函数和咱们实际生活当中的这个汉字的这个概念是吧,稍微有点偏差,所以你加一个下图你就能够知道了。你看你一旦将下空,那很显然就是你的抛物线向上,那很显然它是不是就有最小值呀。

好,那么咱们先来基本概念,知道了是不是啊,这个函数是吧,我们把它叫做损失函数,那这个损失函数如果要是通函数的话。

还有一个好处就是我们,嗯,可以就是可以确定它呢,一定是这个它的极值呢,就是咱们的自由基。

他呢,一定是全局最优解。因为你这个方程是二次开口,它的开口向上,这个时候呢,你看咱们求导,0,导数等于0,是不是就可以求解最优值啊,对不对,所以说呢,这就是为什么我们要了解图函数概念。

另外一个问题就出来了,这个函数咱画出来图,简单的咱能够知道说他是下图,那如果给你一个函数,咱们怎么去判定呀。

对不对,如果他要不是图函数,它有没有这个最小值,有没有最优解呢?

对不对,那你看一下这个图形,看一下这个图片是不是你像这个它就是一个非突函数,看到了这个就是一个非凸函数,那就像连绵不绝的山脉一样,那这个时候呢。你看他们求解的是吧,比如说这个值是吧,它可能就会得到一个局部最优肌,而不是全局的,因为一旦你落到山谷,这个时候呢,你优化你就走不出来了,很可能就走不出来了,你就不能够走到全局的这个最小值。所以如果不是非同函数是吧,可能咱们有一个求解大解出来,它不是最最优的。那么上面呢,是我们平面的,接下来你看咱们也可以看一个立体的,你看立体左边的这个是吧,它就属于是图函数下凸函数是吧,右边这个就属于是非凸的是吧,立体的。来去,那我们如何判定呢?真正的问题了是吧?判断口函数的方式呢?哎,有很多,那么其中一个非常直观的有效的就是一个方法,就是看黑色矩阵是否是半正定。啊,这一个判定当中有两个非常关键的概念,首先是黑色矩阵,还有就是半程定,咱们看一下黑色矩阵啊。是什么?黑色矩阵是由目标函数点在X处的二阶偏导组成的对称矩阵啊,哎,这就是黑色矩阵,那我们先看黑色矩阵,因为我们上面推导咱们用的是最小的乘法推导正规方程是吧?那我们最后呢,已经求得了它的一界偏导数,看是不是就是它。那我们对一阶偏导数继续求导,咱们是不是就可以得到二阶电的500越位,继续对它求导啊,咱们就可以得到下面这个,一旦我们得到了下面这个是吧,它呢就叫做。啊,这个就叫做黑色矩阵,现在你明白什么是黑色矩阵了吧,这个是不是也很简单对吧,有个概念就行了,好,那么得到了这个黑色矩阵之后呢,大家看啊。

这个对咱们的式子来说,就是在导入的基础上,再次对C塔求导,其结果就是XTX,所谓正定。那接下来咱们看后半部分的概念,什么是正定呢?就是XTX,它的特征值全为正数,这个就是正明。

他这是正定的概念,半正定呢,就是XTX这个矩阵相乘是吧,咱们的特征值大于0就可以啊,特征值大于0就可以,这个就是半等性。

啊对,就是半个点,那我们上面的判断依据是黑色矩阵是否为半证点,如果要示范正定,那么它就属于是图函数,如果要不是半生点,比如说你的课程只有负的,对不对,对不对,那这个时候呢,你就不是那个函数。

啊,那么我们所求解的这个XT和X,它是半证定吗?对不对,你看他是半正病吗?显而易见它是半正经,为什么呢,你看。

咱们的黑色矩阵是XT和X相乘对不对?那这里咱们对C塔损失函数求二阶导数的黑色矩阵是XT和X,得到的一定是半正定的,是自己和自己做点儿成。

那么他呢,是自己和自己做顶称,那具体我们再说一下啊,为什么自己和自己做第二成,咱们得到的就是一定是半正定的。

对不对?那为什么一定犯成0,当X为任意大小的视矩阵时啊,再给一个任意的。

XT.

和X矩阵乘法一定是半正定,为什么呢?想要证明它是半正经,咱们可以考虑对于任意非零向要。

证明

和XT相乘,然后在后面再乘以V负就行。

这个呢,就涉及到咱们先行代数当中半正定的概念。

好,那么咱们呢,就让它相乘是吧,乘完之后呢,你看要注意这是一个这个四个矩阵相乘,咱们矩阵虽然不满足交换率,但是它可以结合对不对,那我们怎么结合呢。

前两个集合就是VT和XT进行结合,结合之后啊,这个时候环节。

就是这两个。

然后后面这两个集合。

因为前面是VTXT,那这个时候咱就可以把T提出来啊,提出来之后X提到前面,那就是XV啊,XV×XV就是XV的转置乘以XV的转置,这个时候它们俩进行相乘,咱们得到一个结果啊,那就是因为你是两个相乘嘛,那就是数2÷2X的平方,它一定是大于等于0的。

其中这个数杠数杠XV表示向量XV的范数,什么是范数呢?什么是范数,这个是一个概念是吧,就是你这两个区面相乘,然后来个开始放啊香肠乘完之后呢,来一个。

因此呢,一定是伴正定的,那到这里我相信各位小伙伴接受起来是吧,那就有一定的难度了。

OK, 咱们先来简化一下,你记住就行了,面试的时候你只要能够说出来主函数是什么,你就跟他强调一下,这就是下图。

把咱们机器学习当中的这个最小的乘法啊。那么它呢,就是一个凸函数。因为呢,我们对于它的最小值乘法二次求导,咱们能够得到这儿啊,能够得到这儿。

XT和X相乘,你知道它是半正定的就够了。

啊,当然我们知道数学它的证明和证明和验证是无止境的,是不是啊,我们学习这个是吧,咱们是为了应用啊,站到巨人的肩膀上,这就很好,所以说我们直接拿来用是吧,就可以了啊。

那这里呢,咱们就不再做数学推导证明了,哎,我也证明不了,太难了。

是吧,更高级的是吧,咱也证明不了,一体学习当中往往损失函数都是图函数物一样进行学习呢,就是咱们所说的常规的算法,就是咱们s learn当中的这些算法,那么到深度学习当中呢,算式函数往往是非度函数。

既然找到了姐妹,必是全局最优,那他不是?

最优解也可以,只要咱们的模型开用就行是吧?

机器学习的特点就是不强调模型百分之百正确,只要有价值开用就行,明白吗?那只要有价值开用就行。咱们从北京到深圳,你开奔驰宝马也能到,是不是啊,你开这个普通的汽车是不是也能到,你骑自行车、走路也能到。明白吗?所以说这个机器学习的特点是吧,他不强调模型百分之百正确,只要有价值开用就行。那你得有一个成本的这个考虑是吧,能够就可以。

好,最后呢,我们一起来看一下数据的配,就是这你看这个函数方程能画出来就是一个心角,好,那么呃,我把这个对这个美丽的数学图形呢,送给各位坚持学习的路飞小伙伴们,好,这一小节的内容我们就提录到这儿,那么到此为止呢,咱们正规方程的介绍我们就告一段落了,好,那么下面的课程当中呢,我们会使用正规方程,咱们呢,哎。实战一下是吧,我们使用正规方程来解决一个咱们的线性回归问题啊,使用正规方程来去解决咱们的线性规则问题,也就是说这个时候我们要算法建模了。好,那么呃,大家呢,梳理一下我的第二个大部分正规方程,咱们所讲的知识点,最小的乘法。最小二乘法当中的正规方程,我们使用正规方程对多元一次发生的求解矩阵的转置。求导公式,还有咱们推导正规方程,咱们。如何一步步进行推导的,还有咱们图函数的判定是吧?我们之所以能够对最小2乘法进行求最小值,求导数,定导数等于0去求最小值,原因就是因为咱们的这个最小儿乘法啊,注意啊,咱们的最小的乘法它也叫损失函数,就是那个GC塔。它呢是一个凸函数,所以咱们才可以对它进行求解。

3、线性回归实战

3.1、使用正规方程进行求解

3.1.1、简单线性回归
3.1.2、多元线性回归

3.2、机器学习库scikit-learn

3.2.1、scikit-learn简介
3.2.2、scikit-learn实现简单线性回归
3.2.3、scikit-learn实现多元线性回归

4、线性回归算法推导

4.1、深入理解回归

4.2、误差分析

4.3、最大似然估计

4.4、高斯分布-概率密度函数

4.5、误差总似然

4.6、最小二乘法MSE

4.7、归纳总结升华

相关推荐
DO_Community11 分钟前
用不了 Manus ?其实你能用 Llama或DeepSeek 做个自己的 AI Agent
人工智能·机器学习·llama
山北雨夜漫步16 分钟前
机器学习 Day03 Numpy基本使用
人工智能·机器学习
AI技术控16 分钟前
计算机视觉算法实战——昆虫识别检测(主页有源码)
人工智能·算法·计算机视觉
hellolianhua1 小时前
大数据hadoop课程笔记
大数据·hadoop·笔记
你的微笑像拥抱1 小时前
vscode 源代码管理
笔记
技术干货贩卖机1 小时前
0基础 | 看懂原理图Datasheet 系列1
笔记·stm32·单片机·嵌入式硬件·学习
西猫雷婶1 小时前
python学智能算法(七)|KNN邻近算法
算法
好评笔记1 小时前
AIGC视频生成模型:慕尼黑大学、NVIDIA等的Video LDMs模型
人工智能·深度学习·机器学习·计算机视觉·aigc·transformer·面试八股
用户9080321969251 小时前
OpenCV三大经典项目实战 掌握计算机视觉核心技能-|果fx
算法
Vitalia1 小时前
⭐算法OJ⭐经典题目分类索引(持续更新)
算法