opencv实现边缘模板匹配

在OpenCV中使用C++进行模板匹配时,如果你想利用边缘特征来提高匹配的鲁棒性,可以结合边缘检测算法(如Canny)来提取图像和模板的边缘信息,然后在这些边缘图像上进行模板匹配

python 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main() {
    // 加载图像和模板
    Mat img = imread("image.jpg", IMREAD_GRAYSCALE);
    Mat templ = imread("template.jpg", IMREAD_GRAYSCALE);

    if (img.empty() || templ.empty()) {
        cout << "Could not open or find the image or template!" << endl;
        return -1;
    }

    // 使用Canny边缘检测提取图像和模板的边缘
    Mat edges_img, edges_templ;
    Canny(img, edges_img, 50, 150);
    Canny(templ, edges_templ, 50, 150);

    // 创建结果矩阵
    Mat result;
    int result_cols = img.cols - templ.cols + 1;
    int result_rows = img.rows - templ.rows + 1;
    result.create(result_rows, result_cols, CV_32FC1);

    // 进行模板匹配
    matchTemplate(edges_img, edges_templ, result, TM_CCOEFF_NORMED);

    // 找到最佳匹配位置
    double minVal, maxVal;
    Point minLoc, maxLoc;
    minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);

    // 在原始图像上绘制矩形框标记匹配区域
    Mat img_display;
    cvtColor(img, img_display, COLOR_GRAY2BGR);
    rectangle(img_display, maxLoc, Point(maxLoc.x + templ.cols, maxLoc.y + templ.rows), Scalar(0, 255, 0), 2);

    // 显示结果
    imshow("Source Image", img_display);
    imshow("Template", templ);
    imshow("Edges Image", edges_img);
    imshow("Edges Template", edges_templ);
    imshow("Result", result);

    waitKey(0);
    return 0;
}

测试效果





相关推荐
AKAMAI7 分钟前
Entity Digital Sports 降低成本并快速扩展
人工智能·云计算
m0_617663629 分钟前
Deeplizard深度学习课程(七)—— 神经网络实验
人工智能·深度学习·神经网络
笔触狂放36 分钟前
【机器学习】综合实训(一)
人工智能·机器学习
智算菩萨43 分钟前
国内外最新AI语言模型行情分析2025年9月最新内容
人工智能
ningmengjing_1 小时前
激活函数:神经网络的“灵魂开关”
人工智能·深度学习·神经网络
Jayden_Ruan1 小时前
C++逆向输出一个字符串(三)
开发语言·c++·算法
Billy_Zuo1 小时前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归
liulun1 小时前
Skia如何渲染 Lottie 动画
c++·动画
点云SLAM2 小时前
C++ 常见面试题汇总
java·开发语言·c++·算法·面试·内存管理
东风西巷2 小时前
Balabolka:免费高效的文字转语音软件
前端·人工智能·学习·语音识别·软件需求