opencv实现边缘模板匹配

在OpenCV中使用C++进行模板匹配时,如果你想利用边缘特征来提高匹配的鲁棒性,可以结合边缘检测算法(如Canny)来提取图像和模板的边缘信息,然后在这些边缘图像上进行模板匹配

python 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main() {
    // 加载图像和模板
    Mat img = imread("image.jpg", IMREAD_GRAYSCALE);
    Mat templ = imread("template.jpg", IMREAD_GRAYSCALE);

    if (img.empty() || templ.empty()) {
        cout << "Could not open or find the image or template!" << endl;
        return -1;
    }

    // 使用Canny边缘检测提取图像和模板的边缘
    Mat edges_img, edges_templ;
    Canny(img, edges_img, 50, 150);
    Canny(templ, edges_templ, 50, 150);

    // 创建结果矩阵
    Mat result;
    int result_cols = img.cols - templ.cols + 1;
    int result_rows = img.rows - templ.rows + 1;
    result.create(result_rows, result_cols, CV_32FC1);

    // 进行模板匹配
    matchTemplate(edges_img, edges_templ, result, TM_CCOEFF_NORMED);

    // 找到最佳匹配位置
    double minVal, maxVal;
    Point minLoc, maxLoc;
    minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);

    // 在原始图像上绘制矩形框标记匹配区域
    Mat img_display;
    cvtColor(img, img_display, COLOR_GRAY2BGR);
    rectangle(img_display, maxLoc, Point(maxLoc.x + templ.cols, maxLoc.y + templ.rows), Scalar(0, 255, 0), 2);

    // 显示结果
    imshow("Source Image", img_display);
    imshow("Template", templ);
    imshow("Edges Image", edges_img);
    imshow("Edges Template", edges_templ);
    imshow("Result", result);

    waitKey(0);
    return 0;
}

测试效果





相关推荐
minhuan16 分钟前
构建AI智能体:一百、AI模型选择与部署考量:从业务需求到实际落地的思考决策
人工智能·大模型选择·大模型介绍
AI浩39 分钟前
Cambrian-S:迈向视频中的空间超感知
人工智能·目标检测·计算机视觉·音视频
编程之路,妙趣横生1 小时前
STL(五) priority_queue 基本用法 + 模拟实现
c++
一念一花一世界1 小时前
Arbess从初级到进阶(9) - 使用Arbess+GitLab实现C++项目自动化部署
c++·ci/cd·gitlab·arbess
信息快讯1 小时前
【机器学习在智能水泥基复合材料中的应用领域】
人工智能·机器学习·材料工程·复合材料·水泥基
q***T5831 小时前
机器学习基础
人工智能·机器学习
大明者省1 小时前
BERT/ViT 模型核心参数 + 实际编码案例表
人工智能·深度学习·bert
大锦终1 小时前
【Linux】Reactor
linux·运维·服务器·c++
isNotNullX1 小时前
数据中台有什么用?数据仓库和数据中台怎么选?
大数据·数据仓库·人工智能·数据中台
roman_日积跬步-终至千里2 小时前
【AI Engineering】Should I build this AI application?—AI应用决策框架与实践指南
大数据·人工智能