opencv实现边缘模板匹配

在OpenCV中使用C++进行模板匹配时,如果你想利用边缘特征来提高匹配的鲁棒性,可以结合边缘检测算法(如Canny)来提取图像和模板的边缘信息,然后在这些边缘图像上进行模板匹配

python 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main() {
    // 加载图像和模板
    Mat img = imread("image.jpg", IMREAD_GRAYSCALE);
    Mat templ = imread("template.jpg", IMREAD_GRAYSCALE);

    if (img.empty() || templ.empty()) {
        cout << "Could not open or find the image or template!" << endl;
        return -1;
    }

    // 使用Canny边缘检测提取图像和模板的边缘
    Mat edges_img, edges_templ;
    Canny(img, edges_img, 50, 150);
    Canny(templ, edges_templ, 50, 150);

    // 创建结果矩阵
    Mat result;
    int result_cols = img.cols - templ.cols + 1;
    int result_rows = img.rows - templ.rows + 1;
    result.create(result_rows, result_cols, CV_32FC1);

    // 进行模板匹配
    matchTemplate(edges_img, edges_templ, result, TM_CCOEFF_NORMED);

    // 找到最佳匹配位置
    double minVal, maxVal;
    Point minLoc, maxLoc;
    minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);

    // 在原始图像上绘制矩形框标记匹配区域
    Mat img_display;
    cvtColor(img, img_display, COLOR_GRAY2BGR);
    rectangle(img_display, maxLoc, Point(maxLoc.x + templ.cols, maxLoc.y + templ.rows), Scalar(0, 255, 0), 2);

    // 显示结果
    imshow("Source Image", img_display);
    imshow("Template", templ);
    imshow("Edges Image", edges_img);
    imshow("Edges Template", edges_templ);
    imshow("Result", result);

    waitKey(0);
    return 0;
}

测试效果





相关推荐
94甘蓝1 小时前
第 12 篇 Dify 入坑记录:database插件连接未关闭
数据库·人工智能·ai·dify·dify插件
mit6.8242 小时前
[nanoGPT] configurator.py | exec() & globals()
人工智能
rengang662 小时前
132-Spring AI Alibaba Vector Neo4j 示例
人工智能·spring·neo4j·rag·spring ai·ai应用编程
mit6.8242 小时前
[nanoGPT] 性能与效率 | `torch.compile()` |`Flash Attention`|`混合精度训练`|`estimate_mfu`
人工智能
豆芽脚脚3 小时前
机器学习之数字识别
人工智能·机器学习
智海观潮3 小时前
Flink在与AI集成的路上再次“遥遥领先” - Flink Agents
大数据·人工智能·flink
honeysuckle_luo4 小时前
RandLA-net-pytorch 复现
人工智能·pytorch·python
_BugMan5 小时前
【大模型】理论基础(1):函数与神经网络
人工智能·深度学习·神经网络
AI模块工坊6 小时前
CVPR 即插即用 | PConv:重新定义高效卷积,一个让模型“跑”得更快、更省的新范式
人工智能·深度学习·计算机视觉·transformer
lzjava20247 小时前
Spring AI加DeepSeek实现一个Prompt聊天机器人
人工智能·spring·prompt