机器学习day5

自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

代码

python 复制代码
import tensorflow as tf
import numpy as np

# 1. 自定义数据集
data = [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], 
        [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6], [0.4, 34.0], [0.8, 62.3]]
data = np.array(data)

# 提取特征和标签
x_data = data[:, 0]
y_data = data[:, 1]

# 转换为 TensorFlow 张量
x_train = tf.constant(np.expand_dims(x_data, axis=1), dtype=tf.float32)
y_train = tf.constant(y_data, dtype=tf.float32)

# 创建数据集并进行批处理、打乱、预取
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size=10)
dataset = dataset.batch(2)
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

# 2. 定义逻辑回归模型
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])

# 3. 定义损失函数和优化器
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
model.compile(optimizer=optimizer, loss="mean_squared_error")

# 4. 训练模型
epochs = 500
history = model.fit(x_train, y_train, epochs=epochs)

# 5. 保存模型
# 方式1: 保存整个模型 (包括模型结构、权重和训练配置)
model.save('./my_model.h5')
相关推荐
生命是有光的2 小时前
【机器学习】机器学习算法
人工智能·机器学习
Blossom.1182 小时前
把 AI 塞进「自行车码表」——基于 MEMS 的 3D 地形预测码表
人工智能·python·深度学习·opencv·机器学习·计算机视觉·3d
小鹿的工作手帐5 小时前
有鹿机器人:为城市描绘清洁新图景的智能使者
人工智能·科技·机器人
TechubNews6 小时前
香港数字资产交易市场蓬勃发展,监管与创新并驾齐驱
人工智能·区块链
DogDaoDao7 小时前
用PyTorch实现多类图像分类:从原理到实际操作
图像处理·人工智能·pytorch·python·深度学习·分类·图像分类
小和尚同志7 小时前
450 star 的神级提示词管理工具 AI-Gist,让提示词不再吃灰
人工智能·aigc
金井PRATHAMA8 小时前
大脑的藏宝图——神经科学如何为自然语言处理(NLP)的深度语义理解绘制新航线
人工智能·自然语言处理
Y|8 小时前
GBDT(Gradient Boosting Decision Tree,梯度提升决策树)总结梳理
决策树·机器学习·集成学习·推荐算法·boosting
大学生毕业题目8 小时前
毕业项目推荐:28-基于yolov8/yolov5/yolo11的电塔危险物品检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·cnn·pyqt·电塔·危险物品
星期天要睡觉8 小时前
深度学习——卷积神经网络CNN(原理:基本结构流程、卷积层、池化层、全连接层等)
人工智能·深度学习·cnn