机器学习day5

自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

代码

python 复制代码
import tensorflow as tf
import numpy as np

# 1. 自定义数据集
data = [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], 
        [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6], [0.4, 34.0], [0.8, 62.3]]
data = np.array(data)

# 提取特征和标签
x_data = data[:, 0]
y_data = data[:, 1]

# 转换为 TensorFlow 张量
x_train = tf.constant(np.expand_dims(x_data, axis=1), dtype=tf.float32)
y_train = tf.constant(y_data, dtype=tf.float32)

# 创建数据集并进行批处理、打乱、预取
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size=10)
dataset = dataset.batch(2)
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

# 2. 定义逻辑回归模型
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])

# 3. 定义损失函数和优化器
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
model.compile(optimizer=optimizer, loss="mean_squared_error")

# 4. 训练模型
epochs = 500
history = model.fit(x_train, y_train, epochs=epochs)

# 5. 保存模型
# 方式1: 保存整个模型 (包括模型结构、权重和训练配置)
model.save('./my_model.h5')
相关推荐
guanshiyishi3 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash3 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki3 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen4 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5895 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库5 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe5 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
ZStack开发者社区6 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算
Spcarrydoinb7 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉
非ban必选7 小时前
spring-ai-alibaba第四章阿里dashscope集成百度翻译tool
java·人工智能·spring