机器学习day5

自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

代码

python 复制代码
import tensorflow as tf
import numpy as np

# 1. 自定义数据集
data = [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], 
        [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6], [0.4, 34.0], [0.8, 62.3]]
data = np.array(data)

# 提取特征和标签
x_data = data[:, 0]
y_data = data[:, 1]

# 转换为 TensorFlow 张量
x_train = tf.constant(np.expand_dims(x_data, axis=1), dtype=tf.float32)
y_train = tf.constant(y_data, dtype=tf.float32)

# 创建数据集并进行批处理、打乱、预取
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size=10)
dataset = dataset.batch(2)
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

# 2. 定义逻辑回归模型
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])

# 3. 定义损失函数和优化器
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
model.compile(optimizer=optimizer, loss="mean_squared_error")

# 4. 训练模型
epochs = 500
history = model.fit(x_train, y_train, epochs=epochs)

# 5. 保存模型
# 方式1: 保存整个模型 (包括模型结构、权重和训练配置)
model.save('./my_model.h5')
相关推荐
yuyuyue24921 分钟前
lstm部分代码解释1.0
人工智能·rnn·lstm
橙意满满的西瓜大侠38 分钟前
PDF问答工具(基于openai API和streamlit)
人工智能·langchain·streamlit
xiaokcehui2 小时前
深度学习与神经网络
人工智能·深度学习·神经网络
Watermelo6172 小时前
DeepSeek:全栈开发者视角下的AI革命者
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·transformer
bohu832 小时前
亚博microros小车-原生ubuntu支持系列:21 颜色追踪
人工智能·opencv·ubuntu·机器人·视觉检测·microros·视觉追踪
金融OG3 小时前
100.1 AI量化面试题:解释夏普比率(Sharpe Ratio)的计算方法及其在投资组合管理中的应用,并说明其局限性
大数据·人工智能·python·机器学习·金融
Naion3 小时前
吴恩达深度学习——有效运作神经网络
深度学习·神经网络·机器学习
明晚十点睡3 小时前
2022ACMToG | 寻找快速的去马赛克算法
人工智能·python·深度学习·算法·机器学习·计算机视觉
繁华落尽,寻一世真情3 小时前
【AudioClassificationModelZoo-Pytorch】基于Pytorch的声音事件检测分类系统
人工智能·pytorch·分类
wzx_Eleven3 小时前
利用腾讯云cloud studio云端免费部署deepseek-R1
人工智能·云计算·腾讯云