python学opencv|读取图像(五十六)使用cv2.GaussianBlur()函数实现图像像素高斯滤波处理

【1】引言

前序学习了均值滤波和中值滤波,对图像的滤波处理有了基础认知,相关文章链接为:

python学opencv|读取图像(五十四)使用cv2.blur()函数实现图像像素均值处理-CSDN博客

python学opencv|读取图像(五十五)使用cv2.medianBlur()函数实现图像像素中值滤波处理-CSDN博客

在此基础上,我们可以进入高斯滤波的学习,此时需要使用cv2.GaussianBlur()函数。

【2】官网教程

点击下方链接,直达cv2.GaussianBlur()函数的官网教程:

OpenCV: Image Filtering

官网页面对cv2.GaussianBlur()函数的说明为:

++图1 cv2.GaussianBlur()函数的官网教程++

官网页面对cv2.GaussianBlur()函数的参数说明为:

void cv::GaussianBlur (

InputArray src, #输入图像

OutputArray dst, #输出图像

Size ksize, #像素核

double sigmaX, #卷积核水平方向标准差,可选参数

double sigmaY = 0, #卷积核竖直方向标准差,可选参数

int borderType = BORDER_DEFAULT, #边界样式,可选参数

AlgorithmHint hint = cv::ALGO_HINT_DEFAULT ) #实现修改标志,无需关注

【3】代码测试

首先是引入模块和相关图像:

python 复制代码
import cv2 as cv  # 引入CV模块

# 读取图片
srcm = cv.imread('srcx.png')  # 读取图像srcx.png

然后是对图像进行高斯滤波处理:

python 复制代码
#滤波计算
src1 = cv.GaussianBlur(srcm,(3,3),0,0)  # 图像取平均值,像素核大小为(3,3)
src2 = cv.GaussianBlur(srcm,(5,5),0,0)  # 图像取平均值,像素核大小为(5,5)
src3 = cv.GaussianBlur(srcm,(7,7),0,0)  # 图像取平均值,像素核大小为(7,7)

之后显示图像:

python 复制代码
# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('src1 ', src1)
cv.imshow('src2 ', src2)
cv.imshow('src3 ', src3)
cv.imwrite('src1g.png',src1)
cv.imwrite('src2g.png',src2)
cv.imwrite('src3g.png',src3)
# 窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

程序运行使用的相关图像为:

++图2 初始图像scrx.png++

++图3 高斯滤波图像scr1.png++

++图4 高斯滤波图像scr2.png++

++图5 高斯滤波图像scr3.png++

和调用cv2.blur()函数使用均值滤波处理,调用cv2.medianBlur()函数进行中值滤波处理一样,调用cv.GaussianBlur()函数进行高斯滤波处理后,由图2到图5可见,随着像素核的增大,图像越来越模糊。这提醒我们,控制像素核的大小,可以进一步控制图像的模糊程度。

【4】细节说明

调用cv2.medianBlur()函数进行中值滤波时,使用的像素核只需要写出边长n,但这个边长也应该是奇数,cv2.medianBlur()函数会自动根据这个边长划定一个正方形的像素核。

调用cv2.blur()函数进行均值滤波和调用cv2.GaussianBlur()函数进行高斯滤波处理时,均需要给出(nXn)大小的像素核,这个n应使用奇数。

像素核使用奇数大小会比较好,是因为奇数大小会在最中间围成一个方格,这个方格就是核心方格,滤波计算的值直接赋给这个核心方格。

++图6 图像滤波技术对比++

【5】总结

掌握了使用python+opencv实现调用cv2.GaussianBlur()函数进行高斯滤波处理图像的技巧。

相关推荐
Learn-Python5 小时前
MongoDB-only方法
python·sql
小途软件5 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚6 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei2007086 小时前
生产者消费者
开发语言·python
清水白石0087 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
昵称已被吞噬~‘(*@﹏@*)’~7 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
2501_941877987 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
酩酊仙人7 小时前
fastmcp构建mcp server和client
python·ai·mcp
格林威8 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词8 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek