PyTorch Geometric(PyG)机器学习实战

PyTorch Geometric(PyG)机器学习实战

在图神经网络(GNN)的研究和应用中,PyTorch Geometric(PyG)作为一个基于PyTorch的库,提供了高效的图数据处理和模型构建功能。

本文将通过一个节点分类任务,演示如何使用PyG进行机器学习实战。

1. 环境准备

首先,确保已安装PyTorch和PyG。可以使用以下命令进行安装:

bash 复制代码
pip install torch
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric

2. 导入必要的库

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv

3. 加载数据集

我们使用PyG自带的Planetoid数据集,这里以Cora数据集为例。

dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]

4. 定义GCN模型

我们将构建一个包含两层图卷积层(GCNConv)的模型。

class GCN(nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(in_channels, hidden_channels)
        self.conv2 = GCNConv(hidden_channels, out_channels)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)

5. 初始化模型和优化器

model = GCN(in_channels=dataset.num_node_features,
            hidden_channels=16,
            out_channels=dataset.num_classes)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

6. 训练模型

def train():
    model.train()
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss.item()

for epoch in range(200):
    loss = train()
    if epoch % 10 == 0:
        print(f'Epoch {epoch}, Loss: {loss:.4f}')

7. 测试模型

def test():
    model.eval()
    out = model(data)
    pred = out.argmax(dim=1)
    correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
    acc = int(correct) / int(data.test_mask.sum())
    return acc

accuracy = test()
print(f'Accuracy: {accuracy:.4f}')

8. 完整代码

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv

# 加载数据集
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]

# 定义GCN模型
class GCN(nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(in_channels, hidden_channels)
        self.conv2 = GCNConv(hidden_channels, out_channels)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)

# 初始化模型和优化器
model = GCN(in_channels=dataset.num_node_features,
            hidden_channels=16,
            out_channels=dataset.num_classes)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

# 训练模型
def train():
    model.train()
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss.item()

for epoch in range(200):
    loss = train()
    if epoch % 10 == 0:
        print(f'Epoch {epoch}, Loss: {loss:.4f}')

# 测试模型
def test():
    model.eval()
    out = model(data)
    pred = out.argmax(dim=1)
    correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
    acc = int(correct) / int(data.test_mask.sum())
    return acc

accuracy = test()
print(f'Accuracy: {accuracy:.4f}')
'''

9. 结果分析

通过上述步骤,我们成功地使用PyG构建并训练了一个图卷积神经网络(GCN)模型。
在训练过程中,模型逐步学习图结构数据的特征,最终在测试集上取得了较好的分类准确率。
这展示了PyG在图数据处理和模型构建方面的强大功能。

10. 参考文献

• PyTorch Geometric官方文档
• PyTorch Geometric教程

通过本教程,您可以了解如何使用PyG进行图神经网络的构建和训练,为进一步的研究和应用奠定基础。

相关推荐
taxunjishu14 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域14 小时前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源
囚生CY14 小时前
【速写】优化的深度与广度(Adam & Moun)
人工智能·python·算法
hqyjzsb14 小时前
2025年市场岗位能力重构与跨领域转型路径分析
c语言·人工智能·信息可视化·重构·媒体·改行学it·caie
爱学习的uu14 小时前
CURSOR最新使用指南及使用思路
人工智能·笔记·python·软件工程
Cathy Bryant15 小时前
大模型损失函数(二):KL散度(Kullback-Leibler divergence)
笔记·神经网络·机器学习·数学建模·transformer
叶凡要飞15 小时前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
叶庭云15 小时前
一文掌握 CodeX CLI 安装以及使用!
人工智能·openai·安装·使用教程·codex cli·编码智能体·vibe coding 终端
yuluo_YX15 小时前
VSR 项目解析
人工智能·python
cdming15 小时前
微软Win11双AI功能来袭:“AI管家”+聊天机器人重构桌面交互体验
人工智能·microsoft·机器人