在上一篇文章中,我们讨论了如何构建一个翻译助手Agent。今天,我想分享另一个实际项目:如何构建一个写作助手Agent。这个项目源于我们一个内容团队的真实需求 - 提升创作效率,保障内容质量。
从创作痛点说起
记得和内容团队讨论时的场景:
plaintext
小王:每天要写很多文章,有时候会卡壳
小李:是啊,而且要保持文风一致也很难
我:主要是哪些写作场景?
小王:技术博客、产品文案、运营文章这些
我:这些场景很适合用AI Agent来协助
经过需求分析,我们确定了几个核心功能:
- 智能创作
- 风格管理
- 内容优化
- 素材管理
技术方案设计
首先是整体架构:
python
from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncio
class WritingTask(Enum):
CREATE = "create"
STYLE = "style"
OPTIMIZE = "optimize"
MATERIAL = "material"
class WritingContext(BaseModel):
task_type: WritingTask
topic: str
style: str
length: Optional[int]
keywords: Optional[List[str]]
references: Optional[List[Dict[str, Any]]]
class WritingAssistant:
def __init__(
self,
config: Dict[str, Any]
):
# 1. 初始化写作模型
self.writing_model = WritingLLM(
model="gpt-4",
temperature=0.7,
context_length=8000
)
# 2. 初始化工具集
self.tools = {
"creator": ContentCreator(),
"stylist": StyleManager(),
"optimizer": ContentOptimizer(),
"material": MaterialManager()
}
# 3. 初始化知识库
self.knowledge_base = VectorStore(
embeddings=WritingEmbeddings(),
collection="writing_knowledge"
)
async def process_task(
self,
context: WritingContext
) -> Dict[str, Any]:
# 1. 分析任务
task_info = await self._analyze_task(
context
)
# 2. 准备资源
resources = await self._prepare_resources(
context,
task_info
)
# 3. 生成方案
plan = await self._generate_plan(
task_info,
resources
)
# 4. 执行任务
result = await self._execute_task(
plan,
context
)
return result
async def _analyze_task(
self,
context: WritingContext
) -> Dict[str, Any]:
# 1. 识别写作类型
writing_type = await self._identify_writing_type(
context.topic
)
# 2. 评估难度
difficulty = await self._evaluate_difficulty(
context
)
# 3. 确定策略
strategy = await self._determine_strategy(
writing_type,
difficulty
)
return {
"type": writing_type,
"difficulty": difficulty,
"strategy": strategy
}
智能创作功能
首先实现智能创作功能:
python
class ContentCreator:
def __init__(
self,
model: WritingLLM
):
self.model = model
async def create_content(
self,
context: WritingContext
) -> Dict[str, Any]:
# 1. 构思内容
outline = await self._brainstorm_outline(
context
)
# 2. 撰写内容
content = await self._write_content(
outline,
context
)
# 3. 优化内容
optimized = await self._optimize_content(
content,
context
)
return optimized
async def _brainstorm_outline(
self,
context: WritingContext
) -> Dict[str, Any]:
# 1. 收集素材
materials = await self._collect_materials(
context.topic,
context.references
)
# 2. 生成大纲
outline = await self._generate_outline(
materials,
context
)
# 3. 优化结构
structure = await self._optimize_structure(
outline
)
return {
"materials": materials,
"outline": outline,
"structure": structure
}
async def _write_content(
self,
outline: Dict[str, Any],
context: WritingContext
) -> Dict[str, Any]:
sections = []
for section in outline["structure"]:
# 1. 准备素材
section_materials = await self._prepare_section_materials(
section,
outline["materials"]
)
# 2. 撰写章节
content = await self.model.write(
section,
section_materials,
context.style
)
# 3. 优化表达
optimized = await self._optimize_expression(
content,
context.style
)
sections.append({
"title": section["title"],
"content": optimized,
"materials": section_materials
})
return sections
风格管理功能
接下来是风格管理功能:
python
class StyleManager:
def __init__(
self,
model: WritingLLM
):
self.model = model
async def manage_style(
self,
context: WritingContext,
content: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 分析风格
style_info = await self._analyze_style(
content
)
# 2. 调整风格
adjusted = await self._adjust_style(
content,
context.style
)
# 3. 统一风格
unified = await self._unify_style(
adjusted
)
return unified
async def _analyze_style(
self,
content: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 语言风格分析
language = await self._analyze_language(
content
)
# 2. 表达特点分析
expression = await self._analyze_expression(
content
)
# 3. 结构特点分析
structure = await self._analyze_structure(
content
)
return {
"language": language,
"expression": expression,
"structure": structure
}
async def _adjust_style(
self,
content: Dict[str, Any],
target_style: str
) -> Dict[str, Any]:
# 1. 加载风格模板
template = await self._load_style_template(
target_style
)
# 2. 调整语言
language_adjusted = await self._adjust_language(
content,
template
)
# 3. 调整表达
expression_adjusted = await self._adjust_expression(
language_adjusted,
template
)
return expression_adjusted
内容优化功能
再来实现内容优化功能:
python
class ContentOptimizer:
def __init__(
self,
model: WritingLLM
):
self.model = model
async def optimize_content(
self,
context: WritingContext,
content: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 分析内容
analysis = await self._analyze_content(
content
)
# 2. 优化内容
optimized = await self._optimize_content(
content,
analysis
)
# 3. 验证质量
validated = await self._validate_quality(
optimized,
context
)
return validated
async def _analyze_content(
self,
content: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 结构分析
structure = await self._analyze_structure(
content
)
# 2. 逻辑分析
logic = await self._analyze_logic(
content
)
# 3. 表达分析
expression = await self._analyze_expression(
content
)
return {
"structure": structure,
"logic": logic,
"expression": expression
}
async def _optimize_content(
self,
content: Dict[str, Any],
analysis: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 优化结构
structure_optimized = await self._optimize_structure(
content,
analysis["structure"]
)
# 2. 优化逻辑
logic_optimized = await self._optimize_logic(
structure_optimized,
analysis["logic"]
)
# 3. 优化表达
expression_optimized = await self._optimize_expression(
logic_optimized,
analysis["expression"]
)
return expression_optimized
素材管理功能
最后是素材管理功能:
python
class MaterialManager:
def __init__(
self,
model: WritingLLM
):
self.model = model
async def manage_materials(
self,
context: WritingContext
) -> Dict[str, Any]:
# 1. 收集素材
materials = await self._collect_materials(
context
)
# 2. 整理素材
organized = await self._organize_materials(
materials
)
# 3. 推荐素材
recommended = await self._recommend_materials(
organized,
context
)
return recommended
async def _collect_materials(
self,
context: WritingContext
) -> Dict[str, Any]:
# 1. 搜索相关内容
search_results = await self._search_content(
context.topic,
context.keywords
)
# 2. 提取关键信息
key_info = await self._extract_key_info(
search_results
)
# 3. 验证可用性
validated = await self._validate_materials(
key_info
)
return validated
async def _organize_materials(
self,
materials: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 分类整理
categorized = await self._categorize_materials(
materials
)
# 2. 标记重要性
marked = await self._mark_importance(
categorized
)
# 3. 建立索引
indexed = await self._build_index(
marked
)
return indexed
实际效果
经过两个月的使用,这个写作助手Agent带来了显著的改善:
-
效率提升
- 创作速度提升70%
- 素材整理更快
- 修改优化更便捷
-
质量改善
- 内容更专业
- 风格更统一
- 表达更流畅
-
体验优化
- 创作更轻松
- 协作更顺畅
- 管理更便捷
实践心得
在开发这个写作助手Agent的过程中,我总结了几点经验:
-
理解需求
- 把握写作目标
- 理解受众特点
- 注重实用性
-
保持风格
- 风格要统一
- 表达要自然
- 内容要专业
-
持续优化
- 收集反馈
- 更新知识库
- 改进算法
写在最后
一个好的写作助手Agent不仅要能生成内容,更要理解写作的本质,帮助创作者提升内容质量。它就像一个经验丰富的编辑,在合适的时候给出恰当的建议。
在下一篇文章中,我会讲解如何开发一个产品助手Agent。如果你对写作助手Agent的开发有什么想法,欢迎在评论区交流。