【深度学习】DataLoader自定义数据集制作

第一步 导包

python 复制代码
import os
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
from torchvision import transforms,models,datasets
import imageio
import time
import warnings
import random
import sys
import copy
import json
from PIL import Image

第二步 自定义数据集

python 复制代码
data_dir = "./flower_data/"
train_dir = data_dir + "/train_filelist"
valid_dir = data_dir + "/val_filelist"
python 复制代码
from torch.utils.data import Dataset,DataLoader
class FlowerDataset(Dataset):
    def __init__(self,root_dir,ann_file,transform=None):
        self.ann_file = ann_file
        self.root_dir = root_dir
        self.img_label = self.load_annotations()
        self.img = [os.path.join(self.root_dir,img) for img in list(self.img_label.keys())]
        self.label = [label for label in list(self.img_label.values())]
        self.transform = transform
        
    def __len__(self):
        return len(self.img)
    
    def __getitem__(self,idx):
        image = Image.open(self.img[idx])
        label = self.label[idx]
        if self.transform:
            image = self.transform(image)
        label = torch.from_numpy(np.array(label))
        return image,label
    
    def load_annotations(self):
        data_infos = {}
        with open(self.ann_file) as f:
            samples = [x.strip().split(" ") for x in f.readlines()]
            for filename,gt_label in samples:
                data_infos[filename] = np.array(gt_label,dtype=np.int64)
        return data_infos

注:ann_file内容格式如下

第三步 自定义transform

python 复制代码
data_transforms = {
    "train":
        transforms.Compose([
            transforms.Resize(64),
            transforms.RandomRotation(45),
            transforms.CenterCrop(64),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomVerticalFlip(p=0.5),
            transforms.ToTensor(),
            transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
        ]),
    "valid":
        transforms.Compose([
            transforms.Resize(64),
            transforms.CenterCrop(64),
            transforms.ToTensor(),
            transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
        ])
}

第四步 根据自定义Dataset实例化DataLoader

①实例化Dataset

python 复制代码
train_dataset = FlowerDataset(root_dir=train_dir,ann_file="./flower_data/train.txt",transform=data_transforms["train"])
valid_dataset = FlowerDataset(root_dir=train_dir,ann_file="./flower_data/val.txt",transform=data_transforms["valid"])

②实例化DataLoader

python 复制代码
train_loader = DataLoader(train_dataset,batch_size=64,shuffle=True)
val_loader = DataLoader(valid_dataset,batch_size=64,shuffle=True)

③验证图片是否加载正确

python 复制代码
image, label = iter(train_loader).next()
sample = image[0].squeeze()
sample = sample.permute((1, 2, 0)).numpy()
sample *= [0.229, 0.224, 0.225]
sample += [0.485, 0.456, 0.406]
plt.imshow(sample)
plt.show()
print('Label is: {}'.format(label[0].numpy()))


第五步 训练

①前置准备

python 复制代码
dataloaders = {"train":train_loader,"valid":val_loader}

model_name = "resnet"
feature_extract = True

# 是否用GPU训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 使用模型
model_ft = models.resnet18()
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102))

# 优化器设置
optimizer_ft = optim.Adam(model_ft.parameters(),lr=1e-3)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft,step_size=7,gamma=0.1)
criterion = nn.CrossEntropyLoss()

②自定义模型

python 复制代码
def train_model(model,dataloaders,criterion,optimizer,num_epochs=25,is_inception=False,filename="best.pth"):
    since = time.time()
    best_acc = 0
    model.to(device)
    
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]["lr"]]
    
    best_model_wts = copy.deepcopy(model.state_dict())
    
    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch,num_epochs-1))
        print("-"*10)
        
        # 训练和验证
        for phase in ["train","valid"]:
            if phase == "train":
                model.train()
            else:
                model.eval()
                
            running_loss = 0.0
            running_corrects = 0
            
            # 遍历所有数据
            for inputs,labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
                
                # 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    loss = criterion(outputs,labels)
                    _,preds = torch.max(outputs,1)
                    
                    if phase == "train":
                        loss.backward()
                        optimizer.step()
                        
                # 计算损失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds==labels.data)
                
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            
            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
            
            
            # 得到最好的那次模型
            if phase=="valid" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                    "state_dict":model.state_dict(),
                    "best_acc":best_acc,
                    "optimizer":optimizer.state_dict()
                }
                torch.save(state,filename)
                
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)#学习率衰减
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
                
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))
    

    # 训练完后用最好的一次当做模型最终的结果,等着一会测试
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

③训练模型

python 复制代码
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, filename='best.pth')
相关推荐
却道天凉_好个秋4 分钟前
深度学习(四):数据集划分
人工智能·深度学习·数据集
数字冰雹7 分钟前
“图观”端渲染场景编辑器
人工智能·编辑器
里昆8 分钟前
【AI】Tensorflow在jupyterlab中运行要注意的问题
人工智能·python·tensorflow
荼蘼28 分钟前
OpenCV 高阶 图像金字塔 用法解析及案例实现
人工智能·opencv·计算机视觉
Clownseven31 分钟前
2025云计算趋势:Serverless与AI大模型如何赋能中小企业
人工智能·serverless·云计算
2401_8288906432 分钟前
使用 BERT 实现意图理解和实体识别
人工智能·python·自然语言处理·bert·transformer
Cheney8221 小时前
华为Ai岗机考20250903完整真题
人工智能·华为
新智元1 小时前
=COPILOT() 函数横空出世!AI 自动写公式效率起飞,网友:让 Excel 再次伟大
人工智能·openai
scx_link1 小时前
Word2Vec词嵌入技术和动态词嵌入技术
人工智能·自然语言处理·word2vec
云梦谭1 小时前
Cursor 编辑器:面向 AI 编程的新一代 IDE
ide·人工智能·编辑器