CNN-day6-经典神经网络AlexNet

day7-经典神经网络AlexNet

ImageNet大规模视觉挑战赛(ILSVRC)被称为深度学习在图像分类任务研究方面进展的标杆。

AlexNet网络参加了ILSVRC2012年大赛获得冠军(超过第二名10%的性能),掀起了一波深度学习的浪潮,一个具有里程碑意义的网络

1 模型结构

5个卷积层3个全连接层(池化和Normal不作为层看待)

2 网络创新

多GPU训练,ReLU激活函数,LRN归一化,Dropout,重叠池化,数据增强等。

2.1首发GPU训练网络

AlexNet使用了两块GTX 580 GPU进行训练,单个GTX 580只有3GB显存,这限制了可训练的网络的最大规模。因此作者将AlexNet分布在两个GPU上,在每个GPU的显存中储存一半的神经元的参数。

除了将模型的神经元进行了并行,还使得通信被限制在了某些网络层。第三层卷积要使用第二层所有的特征图,但是第四层却只需要同一块GPU中的第三层的特征图。

2.2使用ReLU激活函数

全称为:Rectified Linear Unit,是一种人工神经网络中常用的激活函数,通常意义下,其指代数学中的斜坡函数

2.3使用LRN局部响应归一化

LRN目的在于卷积(即 Relu 激活函数出来之后的)值进行局部的归一化。

归一化(normalization)的目的就是"抑制",借鉴"侧抑制"的思想来实现局部抑制,当我们使用Relu激活函数的时候,这种局部抑制显得很有效果。

LRN的主要思想是在神经元输出的局部范围内进行归一化操作,使得激活值较大的神经元对后续神经元的影响降低,从而减少梯度消失和梯度爆炸的问题。具体来说,对于每个神经元,LRN会将其输出按照局部范围进行加权平均,然后将加权平均值除以一个尺度因子(通常为2),最后将结果取平方根并减去均值,得到归一化后的输出。

作用于ReLU层之后,抑制反馈较小的神经元,放大反馈较大的 神经元,增强模型泛化能力。

后续提出了更加有说服能力的批量归一化(Batch Normalization)的概念,所以现在归一化几乎都用batchNorm的方法实现归一化。

2.4全连接层加入Dropout

正则化方法,提高模型泛化能力。(随机丢弃)

2.5数据增强

增强方法 作用
裁剪、翻转 保证模型能够正常收敛
PCA颜色扰动 top1分类精度提升1%以上

2.6重叠池化

相邻池化区域的窗口有重叠,可提高模型泛化能力。

2.7测试时数据增强

将原始图片进行水平翻转、垂直翻转、对角线翻转、旋转角度等数据增强操作,得到多张图,分别进行推理,再融合得到最终输出结果。

提取图片四个角加中间五个位置并进行左右翻转得到十幅图片, 各自推理求取平均值。

相关推荐
WenGyyyL2 分钟前
研读论文——《用于3D工业异常检测的自监督特征自适应》
人工智能·python·深度学习·机器学习·计算机视觉·3d
fydw_7157 分钟前
音频生成技术的前沿探索:从语音合成到智能Podcast
人工智能·音视频·语音识别
选型宝8 分钟前
腾讯怎样基于DeepSeek搭建企业应用?怎样私有化部署满血版DS?直播:腾讯云X DeepSeek!
人工智能·ai·云计算·腾讯云·选型宝
多巴胺与内啡肽.34 分钟前
OpenCV进阶操作:人脸检测、微笑检测
人工智能·opencv·计算机视觉
Wnq1007238 分钟前
基于 NanoDet 的工厂巡检机器人目标识别系统研究与实现
人工智能·机器学习·计算机视觉·目标跟踪·机器人·巡检机器人
一年春又来44 分钟前
AI-02a5a6.神经网络-与学习相关的技巧-批量归一化
人工智能·神经网络·学习
kovlistudio1 小时前
机器学习第十讲:异常值检测 → 发现身高填3米的不合理数据
人工智能·机器学习
马拉AI1 小时前
解锁Nature发文小Tips:LSTM、CNN与Attention的创新融合之路
人工智能·cnn·lstm
sufu10651 小时前
SpringAI更新:废弃tools方法、正式支持DeepSeek!
人工智能·后端
知舟不叙1 小时前
基于OpenCV中的图像拼接方法详解
人工智能·opencv·计算机视觉·图像拼接