神经网络|(九)概率论基础知识-泊松分布及python仿真

【1】引言

在前序学习进程中,我们已经知晓二项分布是多重伯努利分布,二伯努利分布对应的是可以无限重复、结果只有两种可能的随机试验。

相关文章链接为:

神经网络|(八)概率论基础知识-二项分布及python仿真-CSDN博客

上述文章还调用numpy模块中的numpy.random.binomial()函数,实现了对多重伯努利试验概率分布即二项分布的数学仿真。

【2】泊松分布

实际上,泊松分布是二项分布的一种近似

当二项分布的n很大而p很小时,就会有泊松分布:

上式的证明过程暂略。

泊松分布只有一个参数拉姆达λ。

【3】代码测试

使用python调用numpy模块下的np.random.poisson()函数可以实现按照泊松分布生成随机数。

点击下方链接,直达np.random.poisson()函数的官网教程:

numpy.random.poisson --- NumPy v2.2 Manual

官网页面的函数解释为:

++图1 np.random.poisson()函数官网说明++

首先进行必要模块的引入:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

然后定义泊松分布的参数,参数包括拉姆达λ和size:

python 复制代码
# 定义泊松分布的参数 λ,它代表单位时间(或空间)内事件的平均发生次数
lambda_value = 4
# 生成的随机样本数量
sample_size = 1000

官网对参数拉姆达λ和size的解释为:

++图2 np.random.poisson()函数官网参数说明++

拉姆达λ是n和p的乘积,必须是正数,实际上为0也不太可能;

size代表随机数的数量,可以是矩阵的各种维度形式,也可以就是一个单独的数字。

可以这样理解,random.poisson(lam , size)代表生成size个随机数,这些随机数服从泊松分布,泊松分布的参数为拉姆达λ。

在理解上述参数意义后,直接生成服从泊松分布的随机数:

python 复制代码
# 使用 numpy 生成服从泊松分布的随机数
samples = np.random.poisson(lam=lambda_value, size=sample_size) #生成满足泊松分布的随机数

之后的事情比较简单,把这些数据分布规律,再重新画出来即可:

python 复制代码
# 统计每个事件发生次数的频数
counts = np.bincount(samples)
# 计算每个事件发生次数对应的概率
probabilities = counts / sample_size

# 创建一个表示事件发生次数的数组
event_numbers = np.arange(len(counts))

# 绘制柱状图来展示仿真得到的泊松分布
plt.bar(event_numbers, probabilities, width=0.8, color='skyblue', edgecolor='green')

# 设置图表的标题和坐标轴标签
plt.title(f'Poisson Distribution Simulation (λ = {lambda_value})')
plt.xlabel('Number of Events')
plt.ylabel('Probability')

这段代码的原理是:由于已经按照泊松分布生成了随机数,所以这些随机数的分布规律必然和泊松分布的函数曲线相似,把这个规律画出来即可。

上述代码运行后,生成的图像为:

++图3 泊松分布仿真效果++

此时的完整代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 定义泊松分布的参数 λ,它代表单位时间(或空间)内事件的平均发生次数
lambda_value = 4
# 生成的随机样本数量
sample_size = 1000

# 使用 numpy 生成服从泊松分布的随机数
samples = np.random.poisson(lam=lambda_value, size=sample_size) #生成满足泊松分布的随机数

# 统计每个事件发生次数的频数
counts = np.bincount(samples)
# 计算每个事件发生次数对应的概率
probabilities = counts / sample_size

# 创建一个表示事件发生次数的数组
event_numbers = np.arange(len(counts))

# 绘制柱状图来展示仿真得到的泊松分布
plt.bar(event_numbers, probabilities, width=0.8, color='skyblue', edgecolor='green')

# 设置图表的标题和坐标轴标签
plt.title(f'Poisson Distribution Simulation (λ = {lambda_value})')
plt.xlabel('Number of Events')
plt.ylabel('Probability')

# 显示绘制好的图表
plt.show()

【4】细节说明

代码使用函数np.random.poisson()生成满足泊松分布的随机数,本身未编写泊松分布函数。

【5】总结

回顾了泊松分布的基础知识,使用python语言调用numpy模块中的numpy.random.poisson()函数进行了泊松分布效果仿真。

相关推荐
培风图南以星河揽胜4 天前
Java实习模拟面试|离散数学|概率论|金融英语|数据库实战|职业规划|期末冲刺|今日本科计科要闻速递:技术分享与学习指南
java·面试·概率论
雪不下7 天前
计算机中的数学:概率(3)
概率论
sensen_kiss8 天前
INT305 Machine Learning 机器学习 Pt.9 Probabilistic Models(概率模型)
人工智能·机器学习·概率论
AI大模型学徒8 天前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
谅望者10 天前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
醒过来摸鱼12 天前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
ChoSeitaku14 天前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
Cathy Bryant14 天前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论
谅望者14 天前
数据分析笔记03:概率分布理论
笔记·数据分析·概率论
醒过来摸鱼15 天前
多重组合问题与矩阵配额问题
线性代数·矩阵·概率论