人工智能之数学基础:概率论之韦恩图的应用

韦恩图的应用

由于事件的计算有时候太过于抽象了,此时我们可以使用韦恩图的方式来进行验证,我们下面来举一个例子,A∪B)-C=A∪(B-C)是否成立?我们可以通过韦恩图来完成这个任务:

我们通过这种方式来一点一点的比较,我们可以看到二者根本就不相等。

AB杠和A杠B杠之间的区别?

AB表示AB同时发生,AB杠表示AB不同时发生(覆盖范围大)

A杠B杠表示A、B都不发生(覆盖范围小)

我们也可以通过韦恩图的方式来将二者给画出来

三个事件之间的关系

交翻译为同时,并翻译为或者

恰有一个发生就是只有一个发生(其它的不能发生),至少一个发生就是最少有一个发生(其它的爱发生不发生)

以上就是概率论之韦恩图的应用

相关推荐
金色光环4 天前
切比雪夫不等式的理解以及推导【超详细笔记】
概率论
幻风_huanfeng6 天前
人工智能之数学基础:概率论和数理统计在机器学习的地位
人工智能·神经网络·线性代数·机器学习·概率论
点云SLAM6 天前
海森矩阵(Hessian Matrix)在SLAM图优化和点云配准中的应用介绍
算法·机器学习·矩阵·机器人·概率论·最小二乘法·数值优化
港港胡说11 天前
概率论-独立同分布
概率论
F_D_Z13 天前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
金色光环16 天前
概率论:理解区间估计【超详细笔记】
笔记·数学·概率论·数理统计·区间估计
微小冷22 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
软件开发技术深度爱好者22 天前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角
FF-Studio24 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论