python学opencv|读取图像(六十一)先后使用cv2.dilate()函数和cv2.erode()函数实现图像处理

【1】引言

前序学习进程中,先后了解了使用cv2.erode()函数和cv2.dilate()函数实现图像腐蚀和膨胀处理的效果,相关文章链接为:

python学opencv|读取图像(五十八)使用cv2.erode()函数实现图像腐蚀处理-CSDN博客

python学opencv|读取图像(五十九)使用cv2.dilate()函数实现图像膨胀处理-CSDN博客

不难看出,这两种图像处理方法其实是反着来的,腐蚀会削减一些像素,膨胀会填充一些像素,如果先腐蚀后膨胀,图像也许会有新的效果,这就是上次学习的目标:

python学opencv|读取图像(六十)先后使用cv2.erode()函数和cv2.dilate()函数实现图像处理-CSDN博客

在此基础上,肯定会好奇先膨胀后腐蚀的处理效果,这就是本次学习的目标。

【2】代码测试

先膨胀后腐蚀的代码设计非常简单,这里直接给出完整代码:

python 复制代码
import cv2 as cv  # 引入CV模块
import numpy as np  # 引入numpy模块

# 定义核
k = np.zeros((3, 3), np.uint8)  # 定义核
k1 = np.ones((5, 5), np.uint8)  # 定义核
k2 = np.ones((7, 7), np.uint8)  # 定义核

# 读取图片
srcm = cv.imread('srcck.png')  # 读取图像srcck.png

# 图像计算
dstpz1 = cv.dilate(srcm, k)  # 图像膨胀运算,膨胀核大小为(3,3)
dstpz2 = cv.dilate(srcm, k1)  # 图像膨胀运算,膨胀核大小为(5,5)
dstpz3 = cv.dilate(srcm, k2)  # 图像膨胀运算,膨胀核大小为(7,7)

dstfs1 = cv.erode(dstpz1, k)  # 图像腐蚀运算,像素核大小为(3,3)
dstfs2 = cv.erode(dstpz2, k1)  # 图像腐蚀运算,像素核大小为(5,5)
dstfs3 = cv.erode(dstpz3, k2)  # 图像腐蚀运算,像素核大小为(7,7)

# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('dstfs1', dstfs1)
cv.imwrite('dstfs1.png', dstfs1)
cv.imshow('dstfs2 ', dstfs2)
cv.imwrite('dstfs2.png', dstfs2)
cv.imshow('dstfs3 ', dstfs3)
cv.imwrite('dstfs3.png', dstfs3)

# 窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

由于腐蚀和膨胀都需要一个核,所以在引入必要模块后,定义了核:

复制代码
# 定义核
k = np.zeros((3, 3), np.uint8)  # 定义核
k1 = np.ones((5, 5), np.uint8)  # 定义核
k2 = np.ones((7, 7), np.uint8)  # 定义核

之后按照先膨胀后腐蚀的顺序,对图片依次处理:

复制代码
# 图像计算
dstpz1 = cv.dilate(srcm, k)  # 图像膨胀运算,膨胀核大小为(3,3)
dstpz2 = cv.dilate(srcm, k1)  # 图像膨胀运算,膨胀核大小为(5,5)
dstpz3 = cv.dilate(srcm, k2)  # 图像膨胀运算,膨胀核大小为(7,7)

dstfs1 = cv.erode(dstpz1, k)  # 图像腐蚀运算,像素核大小为(3,3)
dstfs2 = cv.erode(dstpz2, k1)  # 图像腐蚀运算,像素核大小为(5,5)
dstfs3 = cv.erode(dstpz3, k2)  # 图像腐蚀运算,像素核大小为(7,7)

代码运行相关的图像有:

++图1 初始图像srcck.png++

++图2 先膨胀后腐蚀图像dstfs1.png++

++图3 先膨胀后腐蚀图像dstfs2.png++

++图4 先膨胀后腐蚀图像dstfs3.png++

由图2至图4可知,随着先膨胀后腐蚀图像操作核的扩大,图像也越来越趋向于模糊,不过中央的主体形象得到较好的保留,周围的细节被逐渐放弃。

如果想进一步测试,比如增强腐蚀的效果,就可以把腐蚀核变小,比如修改第三章图像膨胀核大小为:

python 复制代码
dstfs3 = cv.erode(dstpz3, k)  # 图像腐蚀运算,像素核大小为(3,3)

此时代码运行后获得的图像为:

++图5 先膨胀后腐蚀图像dstfs3.png-腐蚀作用凸显++

由图5可知,减小腐蚀核后,腐蚀作用凸显,人物形象不仅模糊,脸部的细节也减少了很多。

【3】总结

使用python+opencv检验了对图像先后使用cv2.dilate()函数和cv2.erode()函数进行先膨胀后腐蚀操作的效果。

相关推荐
moxiaoran57533 小时前
uni-app学习笔记二十九--数据缓存
笔记·学习·uni-app
AI蜗牛之家3 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
whyeekkk4 小时前
python打卡第48天
开发语言·python
pop_xiaoli5 小时前
OC—UI学习-2
学习·ui·ios
Lin Hsüeh-ch'in5 小时前
Vue 学习路线图(从零到实战)
前端·vue.js·学习
恰薯条的屑海鸥6 小时前
零基础在实践中学习网络安全-皮卡丘靶场(第十五期-URL重定向模块)
学习·安全·web安全·渗透测试·网络安全学习
Eiceblue6 小时前
Python读取PDF:文本、图片与文档属性
数据库·python·pdf
weixin_527550406 小时前
初级程序员入门指南
javascript·python·算法
程序员的世界你不懂7 小时前
Appium+python自动化(十)- 元素定位
python·appium·自动化
CryptoPP7 小时前
使用WebSocket实时获取印度股票数据源(无调用次数限制)实战
后端·python·websocket·网络协议·区块链