b站——《【强化学习】一小时完全入门》学习笔记及代码(1-3 多臂老虎机)

问题陈述

我们有两个多臂老虎机(Multi-Armed Bandit),分别称为左边的老虎机右边的老虎机。每个老虎机的奖励服从不同的正态分布:

  • 左边的老虎机 :奖励服从均值为 500 ,标准差为 50 的正态分布,即 N(500,50)N(500,50)。

  • 右边的老虎机 :奖励服从均值为 550 ,标准差为 100 的正态分布,即 N(550,100)N(550,100)。

我们的目标是使用 ε-greedy 强化学习算法(ε=0.1,初始值为 998)来估计这两个老虎机的奖励期望值。具体来说,我们需要通过多次尝试(拉动手臂)来逐步更新对每个老虎机奖励的估计,最终找到两个老虎机的奖励期望值。

问题分解

  1. 目标

    • 使用 ε-greedy 算法估计两个老虎机的奖励期望值。

    • 通过多次尝试,逐步更新对每个老虎机奖励的估计。

  2. ε-greedy 算法

    • ε=0.1:表示有 10% 的概率进行随机探索(随机选择一个老虎机),90% 的概率进行利用(选择当前估计奖励最高的老虎机)。

    • 初始值=998:表示每个老虎机的初始奖励估计值为 998。

  3. 奖励分布

    • 左边的老虎机:N(500,50)N(500,50)

    • 右边的老虎机:N(550,100)N(550,100)

  4. 输出

    • 经过多次尝试后,输出两个老虎机的奖励期望值的估计结果

    • 通过运行代码,我们可以得到一个图表,显示两个老虎机奖励期望估计值随着时间的变化情况。随着拉动次数的增加,两个估计值应该逐渐接近它们各自的真实奖励期望值(500 和 550)。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 参数初始化
epsilon = 0.1  # ε-greedy算法中的ε
Q1 = 998  # 左边老虎机的奖励期望估计
Q2 = 998  # 右边老虎机的奖励期望估计
n1 = 0  # 左边老虎机的拉动次数
n2 = 0  # 右边老虎机的拉动次数
num_plays = 10000  # 总共拉动的次数

# 奖励的真实分布
mu1, sigma1 = 500, 50  # 左边老虎机的真实奖励分布(均值,标准差)
mu2, sigma2 = 550, 100  # 右边老虎机的真实奖励分布(均值,标准差)

# 用于存储结果
Q1_estimates = []
Q2_estimates = []

# ε-greedy策略的实验
for t in range(num_plays):
    # 根据ε-greedy策略选择一个老虎机
    if np.random.random() < epsilon:
        action = np.random.choice([1, 2])  # 随机选择左或右
    else:
        action = 1 if Q1 > Q2 else 2  # 选择当前估计奖励最大的老虎机
    
    if action == 1:
        reward = np.random.normal(mu1, sigma1)  # 从左边老虎机获得奖励
        n1 += 1
        Q1 += (reward - Q1) / n1  # 更新左边老虎机的奖励期望估计
        Q1_estimates.append(Q1)
    else:
        reward = np.random.normal(mu2, sigma2)  # 从右边老虎机获得奖励
        n2 += 1
        Q2 += (reward - Q2) / n2  # 更新右边老虎机的奖励期望估计
        Q2_estimates.append(Q2)

# 最终的奖励期望估计
print(f"最终左边老虎机的奖励期望估计: {Q1}")
print(f"最终右边老虎机的奖励期望估计: {Q2}")

# 绘图
plt.figure(figsize=(12, 6))

# 绘制左边老虎机奖励期望估计的变化
plt.plot(Q1_estimates, label="Left Slot Machine (Q1)", color="blue")

# 绘制右边老虎机奖励期望估计的变化
plt.plot(Q2_estimates, label="Right Slot Machine (Q2)", color="red")

# 绘制真实奖励期望值的参考线
plt.axhline(y=mu1, color="blue", linestyle="--", label="True Q1 (500)")
plt.axhline(y=mu2, color="red", linestyle="--", label="True Q2 (550)")

# 图表设置
plt.title("Reward Estimation in ε-greedy Slot Machine Experiment")
plt.xlabel("Number of Plays")
plt.ylabel("Estimated Reward")
plt.legend(loc="best")
plt.grid(True)

# 显示图表
plt.show()

显示结果如图:

相关推荐
weixin_307779134 分钟前
使用FastAPI微服务在AWS EKS中构建上下文增强型AI问答系统
人工智能·python·云计算·fastapi·aws
智驱力人工智能6 分钟前
AI智慧公园管理方案:用科技重塑市民的“夜游体验”
人工智能·科技·安全·边缘计算·视觉分析·人工智能云计算·垂钓检测
蜡笔小新..7 分钟前
【高数上册笔记01】:从集合映射到区间函数
笔记·集合·函数·高等数学
柴薪之王、睥睨众生12 分钟前
(自用)Java学习-5.12(Redis,B2C电商)
java·开发语言·学习
说私域26 分钟前
线下消费经济“举步维艰”,开源AI智能名片链动2+1+S2B2C小程序线上“狂飙突进”!
人工智能·小程序·开源·零售
深蓝易网30 分钟前
深度拆解!MES如何重构生产计划与排产调度全流程?
大数据·运维·人工智能·重构·架构·制造
上海锝秉工控36 分钟前
「光域」系列激光测距传感器:以光为尺,重构空间认知边界
人工智能·重构
Tech Synapse39 分钟前
Unity ML-Agents实战指南:构建多技能游戏AI训练系统
人工智能·游戏·unity
神码小Z1 小时前
Midjourney-V7:支持参考图片头像或背景生成新保真图
人工智能·ai绘画
LVerrrr1 小时前
Missashe考研日记-day36(改版说明)
学习·考研