Datawhale 组队学习 wow-agent task1 学习总结

1. Agents的诞生:从LLMs到自主行动

  • 比喻:想象一下,LLMs(大语言模型)就像是一个超级聪明的图书管理员,它知道很多书里的知识,但它只能告诉你书里写的内容,不能去外面帮你买新书或者帮你做饭。Agents就像是给这个图书管理员配了一个"机器人助手",这个助手不仅知道书里的知识,还能帮你跑腿、做饭、甚至帮你解决实际问题。

2. Agents的核心组件

  • 模型 (Model):这是Agent的"大脑",负责思考和决策。就像是一个聪明的指挥官,知道什么时候该做什么。

  • 工具 (Tools):这是Agent的"手和脚",负责执行具体的任务。就像是一个工具箱,里面有各种工具,比如锤子、螺丝刀、扳手等,可以根据需要选择使用。

  • 编排层 (Orchestration Layer):这是Agent的"指挥中心",负责协调大脑和手脚的工作。就像是一个乐队的指挥,确保每个乐器都在正确的时间演奏。

遇到问题1:

cannot import name 'TypeIs' from 'typing_extensions'

解决方法:

复制代码
pip install --upgrade typing_extensions

整体运行成功后出现:

LangGPT:

将之前的提问先注释掉,然后运行新的代码,得到以下结果:

openAI实现阅卷智能体

同样的操作可以得到以下结果:

代码疑问解析:

复制代码
def get_completion(prompt):
    response = client.chat.completions.create(
        model="glm-4-flash",  # 填写需要调用的模型名称
        messages=[
            {"role": "user", "content": prompt},
        ],
    )
    return response.choices[0].message.content

调用一个语言模型(在这里是 glm-4-flash)来生成对用户输入提示(prompt)的回复内容。

相关推荐
LBuffer几秒前
破解入门学习笔记题三十四
java·笔记·学习
机器学习ing.6 分钟前
U-Net保姆级教程:从原理到医学细胞分割实战(PyTorch版)!
人工智能·pytorch·python·深度学习·机器学习
_pass_14 分钟前
flask 框架的ORM 学习及应用
学习·flask·orm
再睡一夏就好25 分钟前
【C++闯关笔记】unordered_map与unordered_set的底层:哈希表(哈希桶)
开发语言·c++·笔记·学习·哈希算法·散列表
yzx99101331 分钟前
基于Django的智慧园区管理系统开发全解析
后端·python·django
potato_155431 分钟前
现代C++核心特性——内存篇
开发语言·c++·学习
sunsunyu031 小时前
视频转图片工具
python·音视频
软件开发技术深度爱好者1 小时前
Python类中方法种类介绍
开发语言·python
用户8356290780511 小时前
使用Python合并Word文档:实现高效自动化办公
后端·python
敲代码的嘎仔2 小时前
JavaWeb零基础学习Day6——JDBC
java·开发语言·sql·学习·spring·单元测试·maven