Datawhale 组队学习 wow-agent task1 学习总结

1. Agents的诞生:从LLMs到自主行动

  • 比喻:想象一下,LLMs(大语言模型)就像是一个超级聪明的图书管理员,它知道很多书里的知识,但它只能告诉你书里写的内容,不能去外面帮你买新书或者帮你做饭。Agents就像是给这个图书管理员配了一个"机器人助手",这个助手不仅知道书里的知识,还能帮你跑腿、做饭、甚至帮你解决实际问题。

2. Agents的核心组件

  • 模型 (Model):这是Agent的"大脑",负责思考和决策。就像是一个聪明的指挥官,知道什么时候该做什么。

  • 工具 (Tools):这是Agent的"手和脚",负责执行具体的任务。就像是一个工具箱,里面有各种工具,比如锤子、螺丝刀、扳手等,可以根据需要选择使用。

  • 编排层 (Orchestration Layer):这是Agent的"指挥中心",负责协调大脑和手脚的工作。就像是一个乐队的指挥,确保每个乐器都在正确的时间演奏。

遇到问题1:

cannot import name 'TypeIs' from 'typing_extensions'

解决方法:

复制代码
pip install --upgrade typing_extensions

整体运行成功后出现:

LangGPT:

将之前的提问先注释掉,然后运行新的代码,得到以下结果:

openAI实现阅卷智能体

同样的操作可以得到以下结果:

代码疑问解析:

复制代码
def get_completion(prompt):
    response = client.chat.completions.create(
        model="glm-4-flash",  # 填写需要调用的模型名称
        messages=[
            {"role": "user", "content": prompt},
        ],
    )
    return response.choices[0].message.content

调用一个语言模型(在这里是 glm-4-flash)来生成对用户输入提示(prompt)的回复内容。

相关推荐
mortimer2 小时前
安装NVIDIA Parakeet时,我遇到的两个Pip“小插曲”
python·github
@昵称不存在3 小时前
Flask input 和datalist结合
后端·python·flask
赵英英俊3 小时前
Python day25
python
东林牧之3 小时前
Django+celery异步:拿来即用,可移植性高
后端·python·django
_Kayo_4 小时前
VUE2 学习笔记6 vue数据监测原理
vue.js·笔记·学习
何双新4 小时前
基于Tornado的WebSocket实时聊天系统:从零到一构建与解析
python·websocket·tornado
chenchihwen4 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
超浪的晨4 小时前
Java UDP 通信详解:从基础到实战,彻底掌握无连接网络编程
java·开发语言·后端·学习·个人开发
AntBlack4 小时前
从小不学好 ,影刀 + ddddocr 实现图片验证码认证自动化
后端·python·计算机视觉
凪卄12135 小时前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm