Datawhale 组队学习 wow-agent task1 学习总结

1. Agents的诞生:从LLMs到自主行动

  • 比喻:想象一下,LLMs(大语言模型)就像是一个超级聪明的图书管理员,它知道很多书里的知识,但它只能告诉你书里写的内容,不能去外面帮你买新书或者帮你做饭。Agents就像是给这个图书管理员配了一个"机器人助手",这个助手不仅知道书里的知识,还能帮你跑腿、做饭、甚至帮你解决实际问题。

2. Agents的核心组件

  • 模型 (Model):这是Agent的"大脑",负责思考和决策。就像是一个聪明的指挥官,知道什么时候该做什么。

  • 工具 (Tools):这是Agent的"手和脚",负责执行具体的任务。就像是一个工具箱,里面有各种工具,比如锤子、螺丝刀、扳手等,可以根据需要选择使用。

  • 编排层 (Orchestration Layer):这是Agent的"指挥中心",负责协调大脑和手脚的工作。就像是一个乐队的指挥,确保每个乐器都在正确的时间演奏。

遇到问题1:

cannot import name 'TypeIs' from 'typing_extensions'

解决方法:

复制代码
pip install --upgrade typing_extensions

整体运行成功后出现:

LangGPT:

将之前的提问先注释掉,然后运行新的代码,得到以下结果:

openAI实现阅卷智能体

同样的操作可以得到以下结果:

代码疑问解析:

复制代码
def get_completion(prompt):
    response = client.chat.completions.create(
        model="glm-4-flash",  # 填写需要调用的模型名称
        messages=[
            {"role": "user", "content": prompt},
        ],
    )
    return response.choices[0].message.content

调用一个语言模型(在这里是 glm-4-flash)来生成对用户输入提示(prompt)的回复内容。

相关推荐
_Kayo_1 小时前
node.js 学习笔记3 HTTP
笔记·学习
wyiyiyi4 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
CCCC13101635 小时前
嵌入式学习(day 28)线程
jvm·学习
mit6.8245 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
没有bug.的程序员5 小时前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋5 小时前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
星星火柴9365 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
小狗爱吃黄桃罐头5 小时前
正点原子【第四期】Linux之驱动开发篇学习笔记-1.1 Linux驱动开发与裸机开发的区别
linux·驱动开发·学习
AntBlack6 小时前
不当韭菜V1.1 :增强能力 ,辅助构建自己的交易规则
后端·python·pyqt
艾莉丝努力练剑6 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法