本地部署 Ollama 模型并实现本地可视化聊天界面(使用 DeepSeek)

项目背景

随着大语言模型(LLM)技术的发展,Ollama 是一个开源的零信任本地化 AI 框架,它允许您在本地运行大型语言模型,并通过简单的 API 实现实例化和推理。DeepSeek 提供了一个易于使用的 Python 接口库,可以快速集成 Ollama 模型并构建基于模型的应用。

本次项目的目标是:

  1. 在本地部署一个 Ollama 模型实例。
  2. 使用Chatbox实现界面对话

通过本项目的实现,读者将能够了解如何在本地运行 Ollama 模型,实现界面对话


项目目标

  1. 部署 Ollama 模型:使用 DeepSeek 提供的 API 在本地运行 Ollama 模型。
  2. 实现本地聊天界面:使用 ChatBox,支持用户与模型交互,并显示响应结果。

项目步骤

步骤 1:环境配置

我们需要先在本地安装必要的软件和依赖项。

1.1 安装系统要求(可选)

Ollama 和 DeepSeek 需要在 CPU 或 CUDA 环境中运行。为了能够利用 CUDA 加速,建议使用以下硬件:

  • 至少一个高性能的 CPU(最好有至少 4 核心)。
  • 具备支持 CUDA 的 GPU(如 NVIDIA 显卡)。
1.2 安装 CUDA 和cuDNN

如果选择使用 CUDA 加速,则需要安装 CUDA 和 cuDNN。

bash 复制代码
mkdir -p /usr/local/cuda curl https://developer.nvidia.com/cuda-toolkit-linux64 \ -o /usr/local/cuda/cuda toolkit \ -O -N -q chmod 755 /usr/local/cuda cd /usr/local/cuda ./bin/batcu 

步骤 2:部署 Ollama 模型

使用 DeepSeek 提供的 API 在本地运行 Ollama 模型。

官网下载olloma 然后安装

https://ollama.com/

2.1 下载模型

我这里下载7b模型,如果电脑允许可以直接下载其他模型

bash 复制代码
ollama run deepseek-r1:7b

执行成功后, 界面会显示命令行版本的deepseek:


步骤 3:安装 ChatBox 应用

官网下载对应的系统系统版本

为了开发 ChatBox,需要安装一些 Python 库。

Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

3.2 启动 ChatBox 应用

选择本地模型,选择已有的模型会直接在下拉框中展示


总结

通过以上步骤,您已经成功在本地部署了一个 Ollama 模型实例,并使用ChatBox 应用,能够与模型进行交互并显示响应结果。

相关推荐
十八朵郁金香4 分钟前
通俗易懂的DOM1级标准介绍
开发语言·前端·javascript
阿尔法波7 分钟前
python与pycharm如何设置文件夹为源代码根目录
开发语言·python·pycharm
xing251616 分钟前
pytest下allure
开发语言·python·pytest
眸笑丶20 分钟前
使用 Python 调用 Ollama API 并调用 deepseek-r1:8b 模型
开发语言·python
dexianshen23 分钟前
配置mysql8.0使用PXC实现高可用
python
中国loong25 分钟前
pandas连接mysql数据库
python
enyp8041 分钟前
Qt QStackedWidget 总结
开发语言·qt
带娃的IT创业者1 小时前
《Python实战进阶》专栏 No.3:Django 项目结构解析与入门DEMO
数据库·python·django
gu201 小时前
c#编程:学习Linq,重几个简单示例开始
开发语言·学习·c#·linq
lly2024061 小时前
SQLite 删除表
开发语言