本地部署 Ollama 模型并实现本地可视化聊天界面(使用 DeepSeek)

项目背景

随着大语言模型(LLM)技术的发展,Ollama 是一个开源的零信任本地化 AI 框架,它允许您在本地运行大型语言模型,并通过简单的 API 实现实例化和推理。DeepSeek 提供了一个易于使用的 Python 接口库,可以快速集成 Ollama 模型并构建基于模型的应用。

本次项目的目标是:

  1. 在本地部署一个 Ollama 模型实例。
  2. 使用Chatbox实现界面对话

通过本项目的实现,读者将能够了解如何在本地运行 Ollama 模型,实现界面对话


项目目标

  1. 部署 Ollama 模型:使用 DeepSeek 提供的 API 在本地运行 Ollama 模型。
  2. 实现本地聊天界面:使用 ChatBox,支持用户与模型交互,并显示响应结果。

项目步骤

步骤 1:环境配置

我们需要先在本地安装必要的软件和依赖项。

1.1 安装系统要求(可选)

Ollama 和 DeepSeek 需要在 CPU 或 CUDA 环境中运行。为了能够利用 CUDA 加速,建议使用以下硬件:

  • 至少一个高性能的 CPU(最好有至少 4 核心)。
  • 具备支持 CUDA 的 GPU(如 NVIDIA 显卡)。
1.2 安装 CUDA 和cuDNN

如果选择使用 CUDA 加速,则需要安装 CUDA 和 cuDNN。

bash 复制代码
mkdir -p /usr/local/cuda curl https://developer.nvidia.com/cuda-toolkit-linux64 \ -o /usr/local/cuda/cuda toolkit \ -O -N -q chmod 755 /usr/local/cuda cd /usr/local/cuda ./bin/batcu 

步骤 2:部署 Ollama 模型

使用 DeepSeek 提供的 API 在本地运行 Ollama 模型。

官网下载olloma 然后安装

https://ollama.com/

2.1 下载模型

我这里下载7b模型,如果电脑允许可以直接下载其他模型

bash 复制代码
ollama run deepseek-r1:7b

执行成功后, 界面会显示命令行版本的deepseek:


步骤 3:安装 ChatBox 应用

官网下载对应的系统系统版本

为了开发 ChatBox,需要安装一些 Python 库。

Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

3.2 启动 ChatBox 应用

选择本地模型,选择已有的模型会直接在下拉框中展示


总结

通过以上步骤,您已经成功在本地部署了一个 Ollama 模型实例,并使用ChatBox 应用,能够与模型进行交互并显示响应结果。

相关推荐
欧的曼几秒前
cygwin环境下php脚本异常中断后自动重启
开发语言·php
新加坡内哥谈技术8 分钟前
Claude Code 的“AI优先”
人工智能
要做朋鱼燕8 分钟前
ARM CoreSight:多核SoC调试追踪架构解析
开发语言·笔记·职场和发展·嵌入式·嵌入式软件
豆芽81911 分钟前
模糊控制Fuzzy Control
人工智能·算法·模糊控制
從南走到北12 分钟前
JAVA露营基地预约户外露营预约下单系统小程序
java·开发语言·小程序
曹牧19 分钟前
Java:实现List的定长截取
java·开发语言·list
Sui_Network20 分钟前
Sui Stack Messaging SDK:为 Web3 打造可编程通信
大数据·人工智能·科技·web3·去中心化·区块链
Lxinccode23 分钟前
python(42) : 监听本地文件夹上传到服务器指定目录
服务器·开发语言·python·文件上传服务器·监听文件上传服务器
金井PRATHAMA23 分钟前
GraphRAG对自然语言处理中深层语义分析的革命性影响与未来启示
人工智能·自然语言处理·知识图谱
人工智能培训25 分钟前
Transformer-位置编码(Position Embedding)
人工智能·深度学习·大模型·transformer·embedding·vision