本地部署 Ollama 模型并实现本地可视化聊天界面(使用 DeepSeek)

项目背景

随着大语言模型(LLM)技术的发展,Ollama 是一个开源的零信任本地化 AI 框架,它允许您在本地运行大型语言模型,并通过简单的 API 实现实例化和推理。DeepSeek 提供了一个易于使用的 Python 接口库,可以快速集成 Ollama 模型并构建基于模型的应用。

本次项目的目标是:

  1. 在本地部署一个 Ollama 模型实例。
  2. 使用Chatbox实现界面对话

通过本项目的实现,读者将能够了解如何在本地运行 Ollama 模型,实现界面对话


项目目标

  1. 部署 Ollama 模型:使用 DeepSeek 提供的 API 在本地运行 Ollama 模型。
  2. 实现本地聊天界面:使用 ChatBox,支持用户与模型交互,并显示响应结果。

项目步骤

步骤 1:环境配置

我们需要先在本地安装必要的软件和依赖项。

1.1 安装系统要求(可选)

Ollama 和 DeepSeek 需要在 CPU 或 CUDA 环境中运行。为了能够利用 CUDA 加速,建议使用以下硬件:

  • 至少一个高性能的 CPU(最好有至少 4 核心)。
  • 具备支持 CUDA 的 GPU(如 NVIDIA 显卡)。
1.2 安装 CUDA 和cuDNN

如果选择使用 CUDA 加速,则需要安装 CUDA 和 cuDNN。

bash 复制代码
mkdir -p /usr/local/cuda curl https://developer.nvidia.com/cuda-toolkit-linux64 \ -o /usr/local/cuda/cuda toolkit \ -O -N -q chmod 755 /usr/local/cuda cd /usr/local/cuda ./bin/batcu 

步骤 2:部署 Ollama 模型

使用 DeepSeek 提供的 API 在本地运行 Ollama 模型。

官网下载olloma 然后安装

https://ollama.com/

2.1 下载模型

我这里下载7b模型,如果电脑允许可以直接下载其他模型

bash 复制代码
ollama run deepseek-r1:7b

执行成功后, 界面会显示命令行版本的deepseek:


步骤 3:安装 ChatBox 应用

官网下载对应的系统系统版本

为了开发 ChatBox,需要安装一些 Python 库。

Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

3.2 启动 ChatBox 应用

选择本地模型,选择已有的模型会直接在下拉框中展示


总结

通过以上步骤,您已经成功在本地部署了一个 Ollama 模型实例,并使用ChatBox 应用,能够与模型进行交互并显示响应结果。

相关推荐
MVP-curry-萌神14 分钟前
FPGA图像处理(六)------ 图像腐蚀and图像膨胀
图像处理·人工智能·fpga开发
lczdyx14 分钟前
PNG转ico图标(支持圆角矩形/方形+透明背景)Python脚本 - 随笔
图像处理·python
双叶83620 分钟前
(C语言)超市管理系统(测试版)(指针)(数据结构)(二进制文件读写)
c语言·开发语言·数据结构·c++
PXM的算法星球22 分钟前
使用CAS操作实现乐观锁的完整指南
开发语言
struggle202530 分钟前
ebook2audiobook开源程序使用动态 AI 模型和语音克隆将电子书转换为带有章节和元数据的有声读物。支持 1,107+ 种语言
人工智能·开源·自动化
TDengine (老段)32 分钟前
基于 TSBS 标准数据集下 TimescaleDB、InfluxDB 与 TDengine 性能对比测试报告
java·大数据·开发语言·数据库·时序数据库·tdengine·iotdb
深空数字孪生33 分钟前
AI+可视化:数据呈现的未来形态
人工智能·信息可视化
lgily-122535 分钟前
常用的设计模式详解
java·后端·python·设计模式
标贝科技1 小时前
标贝科技:大模型领域数据标注的重要性与标注类型分享
数据库·人工智能
aminghhhh1 小时前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态