基于 GEE 计算研究区年均地表温度数据

目录

[1 代码解析](#1 代码解析)

[2 完整代码](#2 完整代码)

[3 运行结果](#3 运行结果)


1 代码解析

(1)定义研究区:

javascript 复制代码
// 研究区的范围需要自己提前上传
var dataset = table;

// 将研究区显示在中心,后面的数字为缩放等级,范围从1 - 24
Map.centerObject(dataset, 6);

// 将图层添加到地图中
Map.addLayer(dataset);

// 打印数据集信息
print(dataset);

(2)导入地表温度数据:

本文采用的地表温度数据为MOD11A2 V6.1地表温度产品,其包含2000年至今全球的地表温度数据,时间分辨率为8天,空间分辨率为1km。

javascript 复制代码
// 定义 MODIS 地表温度影像集
var modis = ee.ImageCollection('MODIS/061/MOD11A2');

// 定义起始日期
var start = ee.Date('2019-01-01');

// 定义日期范围,从起始日期开始,持续 1 年
var dateRange = ee.DateRange(start, start.advance(1, 'year'));

// 根据日期范围筛选影像集
var mod11a2 = modis.filterDate(dateRange);

// 从筛选后的影像集中选择日间地表温度波段
var modLSTday = mod11a2.select('LST_Day_1km');

(3)转换温度单位:

由于MOD11A2 V6.1地表温度产品的单位为开尔文,所以需要将其转化成摄氏度。

javascript 复制代码
// 对 modLSTday 影像集里的每张影像进行处理
var modLSTc = modLSTday.map(function(img) {
    // 将影像乘以 0.02
    // 再减去 273.15,实现温度从开尔文转换为摄氏度
    // 最后复制原影像的 'system:time_start' 属性
    return img
       .multiply(0.02)
       .subtract(273.15)
       .copyProperties(img, ['system:time_start']);
});

(4)数据可视化:

javascript 复制代码
// 计算 modLSTc 影像集的均值,并将其裁剪到研究区范围内
var clippedLSTc = modLSTc.mean().clip(dataset);

// 将裁剪后的均值影像添加到地图中
Map.addLayer(
    clippedLSTc,
    {
        // 影像显示的最小值
        min: 0,
        // 影像显示的最大值
        max: 35,
        // 影像显示的颜色映射,从蓝色到红色
        palette: ['blue', 'limegreen', 'yellow', 'darkorange', 'red']
    },
    // 图层名称
    'Mean temperature, 2019'
);

(5)导出数据:

将数据导入到Google Drive中,若有进一步处理的需要可从Google Drive中下载。

javascript 复制代码
// 导出裁剪后的影像到 Google Drive
Export.image.toDrive({
    // 要导出的影像
    image: clippedLSTc,
    // 导出影像的描述信息
    description: 'LST_2019',
    // Google Drive 中存储影像的文件夹名称
    folder: 'my_folder',
    // 导出影像的区域范围
    region: dataset,
    // 影像的空间分辨率(单位:米)
    scale: 1000,
    // 影像的坐标参考系统
    crs: 'EPSG:4326',
    // 允许处理的最大像素数
    maxPixels: 1e10
});

2 完整代码

javascript 复制代码
// 研究区的范围需要自己提前上传
var dataset = table;

// 将研究区显示在中心,后面的数字为缩放等级,范围从1 - 24
Map.centerObject(dataset, 6);

// 将图层添加到地图中
Map.addLayer(dataset);

// 打印数据集信息
print(dataset);

// 定义 MODIS 地表温度影像集
var modis = ee.ImageCollection('MODIS/061/MOD11A2');

// 定义起始日期
var start = ee.Date('2019-01-01');

// 定义日期范围,从起始日期开始,持续 1 年
var dateRange = ee.DateRange(start, start.advance(1, 'year'));

// 根据日期范围筛选影像集
var mod11a2 = modis.filterDate(dateRange);

// 从筛选后的影像集中选择日间地表温度波段
var modLSTday = mod11a2.select('LST_Day_1km');

// 对 modLSTday 影像集里的每张影像进行处理
var modLSTc = modLSTday.map(function(img) {
    // 将影像乘以 0.02
    // 再减去 273.15,实现温度从开尔文转换为摄氏度
    // 最后复制原影像的 'system:time_start' 属性
    return img
       .multiply(0.02)
       .subtract(273.15)
       .copyProperties(img, ['system:time_start']);
});

// 计算 modLSTc 影像集的均值,并将其裁剪到研究区范围内
var clippedLSTc = modLSTc.mean().clip(dataset);

// 将裁剪后的均值影像添加到地图中
Map.addLayer(
    clippedLSTc,
    {
        // 影像显示的最小值
        min: 0,
        // 影像显示的最大值
        max: 35,
        // 影像显示的颜色映射,从蓝色到红色
        palette: ['blue', 'limegreen', 'yellow', 'darkorange', 'red']
    },
    // 图层名称
    'Mean temperature, 2019'
);

// 导出裁剪后的影像到 Google Drive
Export.image.toDrive({
    // 要导出的影像
    image: clippedLSTc,
    // 导出影像的描述信息
    description: 'LST_2019',
    // Google Drive 中存储影像的文件夹名称
    folder: 'my_folder',
    // 导出影像的区域范围
    region: dataset,
    // 影像的空间分辨率(单位:米)
    scale: 1000,
    // 影像的坐标参考系统
    crs: 'EPSG:4326',
    // 允许处理的最大像素数
    maxPixels: 1e13
});

3 运行结果

研究区年均地表温度数据可视化结果
点击RUN即可下载数据

相关推荐
是乐谷1 天前
阿里云杭州 AI 产品法务岗位信息分享(2025 年 8 月)
java·人工智能·阿里云·面试·职场和发展·机器人·云计算
青岛佰优联创新科技有限公司1 天前
移动板房的网络化建设
服务器·人工智能·云计算·智慧城市
夕阳与风馨1 天前
三分钟搞懂云计算三大模型:SaaS、PaaS、IaaS 是怎么在业务中“各司其职”的?
后端·云计算
weixin_307779131 天前
AWS Lambda解压缩S3 ZIP文件流程
python·算法·云计算·aws
程序猿小D2 天前
【完整源码+数据集+部署教程】孔洞检测系统源码和数据集:改进yolo11-RetBlock
yolo·计算机视觉·毕业设计·数据集·yolo11·孔洞检测
运维行者_2 天前
使用Applications Manager进行 Apache Solr 监控
运维·网络·数据库·网络安全·云计算·apache·solr
ChaoQiezi2 天前
Python:如何在Pycharm中显示geemap地图?
python·gee
Britz_Kevin3 天前
从零开始的云计算生活——激流勇进,kubernetes模块之Pod资源对象
kubernetes·云计算·生活·#pod
阿湯哥4 天前
Cloud Computing(云计算)和Sky Computing(天空计算)
云计算
爱分享的飘哥4 天前
第六十六篇:AI模型的“口才”教练:Prompt构造策略与自动化实践
人工智能·自动化·prompt·aigc·数据集·llm训练·数据工程