【赵渝强老师】Spark的容错机制:检查点

由于Spark的计算是在内存中完成,因此任务执行的生命周期lineage(血统)越长,执行出错的概念就会越大。Spark通过检查点Checkpoint的方式,将RDD的状态写入磁盘进行持久化的保存从而支持容错。如果在检查点之后有节点出现了问题,Spark只需要从检查点的位置开始重新执行lineage就可以了,这样就减少了开销。设置checkpoint的目录,可以是本地的文件夹,也可以是HDFS。

视频讲解如下
【赵渝强老师】Spark的容错机制:检查点

建议在生产系统中采用具有容错能力、高可靠的文件系统作为检查点保存的目的地。

1、使用本地目录作为检查点目录

这种模式需要将spark-shell运行在本地模式上。下面的代码使用了本地目录作为RDD检查点的目录

(1)设置检查点目录。

scala 复制代码
scala> sc.setCheckpointDir("file:///root/temp/checkpoint")

(2)创建RDD。

scala 复制代码
scala> val rdd1 = sc.textFile("hdfs://bigdata111:9000/input/sales")

(3)标识RDD的检查点。

scala 复制代码
scala> rdd1.checkpoint

(4)执行计算。

scala 复制代码
scala> rdd1.count

(5)当计算完成后,查看本地的/root/temp/checkpoint目录下生成了相应的检查点信息,如下图所示。

2、使用HDFS目录作为检查点目录。

这种模式需要将spark-shell运行在集群模式上。下面的代码使用了HDFS目录作为RDD检查点的目录

(1)设置检查点目录。

scala 复制代码
scala> sc.setCheckpointDir("hdfs://bigdata111:9000/spark/checkpoint")

(2)创建RDD。

scala 复制代码
scala> val rdd1 = sc.textFile("hdfs://bigdata111:9000/input/sales")

(3)标识RDD的检查点。

scala 复制代码
scala> rdd1.checkpoint

(4)执行计算。

scala 复制代码
scala> rdd1.count

(5)当计算完成后,查看HDFS的/spark/checkpoint目录下生成了相应的检查点信息,如下图所示。

相关推荐
小马爱打代码11 小时前
分布式锁:原理算法和使用建议
分布式·算法
IT学长编程11 小时前
计算机毕业设计 基于EChants的海洋气象数据可视化平台设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·python·毕业设计·课程设计·毕业论文·海洋气象数据可视化平台
呆呆小金人11 小时前
SQL入门: HAVING用法全解析
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师
Elastic 中国社区官方博客13 小时前
如何减少 Elasticsearch 集群中的分片数量
大数据·数据库·elasticsearch·搜索引擎·全文检索
一叶飘零_sweeeet13 小时前
从 “黑盒“ 到 “透明“:SkyWalking 实战指南 —— 让微服务问题无所遁形
分布式·微服务·skywalking·分布式链路追踪
知识浅谈13 小时前
Elasticsearch 核心知识点全景解读
大数据·elasticsearch·搜索引擎
武子康14 小时前
大数据-120 - Flink滑动窗口(Sliding Window)详解:原理、应用场景与实现示例 基于时间驱动&基于事件驱动
大数据·后端·flink
Hello.Reader14 小时前
Flink 广播状态(Broadcast State)实战从原理到落地
java·大数据·flink
ApacheSeaTunnel14 小时前
从小时级到分钟级:多点DMALL如何用Apache SeaTunnel把数据集成成本砍到1/3?
大数据·开源·数据集成·seatunnel·技术分享
数据要素X14 小时前
寻梦数据空间 | 路径篇:从概念验证到规模运营的“诊-规-建-运”实施指南
大数据·人工智能·数据要素·数据资产·可信数据空间