【赵渝强老师】Spark的容错机制:检查点

由于Spark的计算是在内存中完成,因此任务执行的生命周期lineage(血统)越长,执行出错的概念就会越大。Spark通过检查点Checkpoint的方式,将RDD的状态写入磁盘进行持久化的保存从而支持容错。如果在检查点之后有节点出现了问题,Spark只需要从检查点的位置开始重新执行lineage就可以了,这样就减少了开销。设置checkpoint的目录,可以是本地的文件夹,也可以是HDFS。

视频讲解如下
【赵渝强老师】Spark的容错机制:检查点

建议在生产系统中采用具有容错能力、高可靠的文件系统作为检查点保存的目的地。

1、使用本地目录作为检查点目录

这种模式需要将spark-shell运行在本地模式上。下面的代码使用了本地目录作为RDD检查点的目录

(1)设置检查点目录。

scala 复制代码
scala> sc.setCheckpointDir("file:///root/temp/checkpoint")

(2)创建RDD。

scala 复制代码
scala> val rdd1 = sc.textFile("hdfs://bigdata111:9000/input/sales")

(3)标识RDD的检查点。

scala 复制代码
scala> rdd1.checkpoint

(4)执行计算。

scala 复制代码
scala> rdd1.count

(5)当计算完成后,查看本地的/root/temp/checkpoint目录下生成了相应的检查点信息,如下图所示。

2、使用HDFS目录作为检查点目录。

这种模式需要将spark-shell运行在集群模式上。下面的代码使用了HDFS目录作为RDD检查点的目录

(1)设置检查点目录。

scala 复制代码
scala> sc.setCheckpointDir("hdfs://bigdata111:9000/spark/checkpoint")

(2)创建RDD。

scala 复制代码
scala> val rdd1 = sc.textFile("hdfs://bigdata111:9000/input/sales")

(3)标识RDD的检查点。

scala 复制代码
scala> rdd1.checkpoint

(4)执行计算。

scala 复制代码
scala> rdd1.count

(5)当计算完成后,查看HDFS的/spark/checkpoint目录下生成了相应的检查点信息,如下图所示。

相关推荐
G皮T43 分钟前
【Elasticsearch】一个图书馆的案例解释 Elasticsearch
大数据·elasticsearch·搜索引擎·全文检索·kibana·索引·index
cdsmjt1 小时前
当文化遇见科技:探秘国际数字影像创新生态高地
大数据
菜鸟康3 小时前
C++实现分布式网络通信框架RPC(2)——rpc发布端
分布式·网络协议·rpc
T06205143 小时前
【实证分析】上市公司企业风险承担水平数据集(2000-2022年)
大数据·人工智能
G皮T3 小时前
【Elasticsearch】映射:Join 类型、Flattened 类型、多表关联设计
大数据·elasticsearch·搜索引擎·nested·join·多表关联·flattened
G皮T3 小时前
【Elasticsearch】映射:Nested 类型
大数据·elasticsearch·搜索引擎·映射·nested·嵌套类型·mappings
狂奔solar3 小时前
逻辑回归暴力训练预测金融欺诈
大数据·金融·逻辑回归
斯普信专业组4 小时前
Kafka主题运维全指南:从基础配置到故障处理
运维·分布式·kafka
linmoo19864 小时前
Flink 系列之二十二 - 高级概念 - 保存点
大数据·flink·savepoint·保存点