SQL高级技巧之埋点解析

一、背景

大数据时代,数据来源主要是业务系统 以及用户行为日志 ,其中 ,用户行为日志的形式主要是埋点,埋点的形式通常是Json格式的字符串,属于半结构化数据,如何将其规范化并入仓?后续如何方便使用?这就需要数仓工作者深思熟虑。

二、案例

用户打开APP并浏览时会触发条目曝光,我们会将曝光日志上传到 Kafka,并 Sink 到数仓,然后通过 ELT 开发相应的底表供使用,但是埋点不是一成不变的,随着产运增加相应的埋点变量,表的字段也会逐渐增多,表结构的频繁变更势必对下游造成影响,为避免频繁变更表结构,我们使用lef 字段储存剩余未解析的埋点变量,无论后期增加多少埋点变量,直接从lef中解析即可。

但是在开发过程中也遇到一些问题,那就是lef中的数据该如何储存?下面为大家一一道来,请看CASE:

起初,lef中字段是以JSON形式存储,但是随着一些不重要的且非埋点事件本身的数据也不像单独放在表中,所以考虑跟lef合并在一起,代码如下:

sql 复制代码
select 
       lef
      ,recv_ts
      ,to_json(named_struct('lef',lef,'recv_ts',recv_ts)) as json_str
from tmp_test where pt = max_pt('tmp_test')
limit 30;

结果如下:

其中,json_str 就是最终字段,但在使用时并不方便,比如解析其中ifAiAnswer_var,代码如下:

sql 复制代码
select get_json_object(get_json_object(lef,'$.lef'),'$.ifAiAnswer_var') 
from table
;

本来 get_json_object 函数支持通过 get_json_object(column,'$.val1.val2') 获取,所以对代码做了修改:

sql 复制代码
select 
       lef
      ,recv_ts
      ,to_json(named_struct('lef',from_json(lef,'map<string,string>'),'recv_ts',recv_ts)) as json_str
from tmp_test where pt = max_pt('tmp_test')
limit 30;

结果如下:

这个时候,就可以根据 path 向下直接获取了。

相关推荐
老蒋新思维16 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
Logic10117 小时前
《Mysql数据库应用》 第2版 郭文明 实验6 数据库系统维护核心操作与思路解析
数据库·sql·mysql·学习笔记·计算机网络技术·形考作业·国家开放大学
是开心的栗子呀17 小时前
阿里云天池:预测二手车交易价格的机器学习项目-高效实现MAE低于500分
人工智能·机器学习·阿里云·ai·云计算
EveryPossible18 小时前
优先级调整练习1
大数据·学习
B站计算机毕业设计之家19 小时前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游
杨云龙UP19 小时前
MySQL 8.0.x InnoDB 写入链路优化:Redo Log 与 Buffer Pool 扩容与缓冲区调优实战记录-20251029
linux·运维·数据库·sql·mysql
CoderYanger20 小时前
C.滑动窗口-求子数组个数-越长越合法——3325. 字符至少出现 K 次的子字符串 I
c语言·数据结构·算法·leetcode·职场和发展·哈希算法·散列表
亿坊电商21 小时前
无人共享茶室智慧化破局:24H智能接单系统的架构实践与运营全景!
大数据·人工智能·架构
老蒋新思维21 小时前
创客匠人峰会新解:AI 时代知识变现的 “信任分层” 法则 —— 从流量到高客单的进阶密码
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
Jerry.张蒙21 小时前
SAP业财一体化实现的“隐形桥梁”-价值串
大数据·数据库·人工智能·学习·区块链·aigc·运维开发