SQL高级技巧之埋点解析

一、背景

大数据时代,数据来源主要是业务系统 以及用户行为日志 ,其中 ,用户行为日志的形式主要是埋点,埋点的形式通常是Json格式的字符串,属于半结构化数据,如何将其规范化并入仓?后续如何方便使用?这就需要数仓工作者深思熟虑。

二、案例

用户打开APP并浏览时会触发条目曝光,我们会将曝光日志上传到 Kafka,并 Sink 到数仓,然后通过 ELT 开发相应的底表供使用,但是埋点不是一成不变的,随着产运增加相应的埋点变量,表的字段也会逐渐增多,表结构的频繁变更势必对下游造成影响,为避免频繁变更表结构,我们使用lef 字段储存剩余未解析的埋点变量,无论后期增加多少埋点变量,直接从lef中解析即可。

但是在开发过程中也遇到一些问题,那就是lef中的数据该如何储存?下面为大家一一道来,请看CASE:

起初,lef中字段是以JSON形式存储,但是随着一些不重要的且非埋点事件本身的数据也不像单独放在表中,所以考虑跟lef合并在一起,代码如下:

sql 复制代码
select 
       lef
      ,recv_ts
      ,to_json(named_struct('lef',lef,'recv_ts',recv_ts)) as json_str
from tmp_test where pt = max_pt('tmp_test')
limit 30;

结果如下:

其中,json_str 就是最终字段,但在使用时并不方便,比如解析其中ifAiAnswer_var,代码如下:

sql 复制代码
select get_json_object(get_json_object(lef,'$.lef'),'$.ifAiAnswer_var') 
from table
;

本来 get_json_object 函数支持通过 get_json_object(column,'$.val1.val2') 获取,所以对代码做了修改:

sql 复制代码
select 
       lef
      ,recv_ts
      ,to_json(named_struct('lef',from_json(lef,'map<string,string>'),'recv_ts',recv_ts)) as json_str
from tmp_test where pt = max_pt('tmp_test')
limit 30;

结果如下:

这个时候,就可以根据 path 向下直接获取了。

相关推荐
shinelord明14 分钟前
【大数据技术实战】Kafka 认证机制全解析
大数据·数据结构·分布式·架构·kafka
DokiDoki之父27 分钟前
Mybatis—入门 & (配置)SQL提示和日志输出
数据库·sql·mybatis
文火冰糖的硅基工坊1 小时前
[创业之路-702]:“第三次”与“第四次工业革命”的范式跃迁
大数据·人工智能·科技·嵌入式硬件·架构·嵌入式·gpu
TDengine (老段)1 小时前
TDengine 数据函数 LN 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
TDengine (老段)4 小时前
连接 TDengine 遇到报错 “failed to connect to server, reason: Connection refused” 怎么办?
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
攻城狮7号4 小时前
AI+大数据时代:如何从架构到生态重构时序数据库的价值?
大数据·人工智能·时序数据库·apache iotdb·sql大模型
TDengine (老段)4 小时前
内网搭建邮件服务,打通 TDengine IDMP 通知途径
大数据·时序数据库·tdengine
AI数据皮皮侠5 小时前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
JAVA学习通5 小时前
SpringOJ竞赛项目----组件ElasticSearch
大数据·elasticsearch·搜索引擎