SQL高级技巧之埋点解析

一、背景

大数据时代,数据来源主要是业务系统 以及用户行为日志 ,其中 ,用户行为日志的形式主要是埋点,埋点的形式通常是Json格式的字符串,属于半结构化数据,如何将其规范化并入仓?后续如何方便使用?这就需要数仓工作者深思熟虑。

二、案例

用户打开APP并浏览时会触发条目曝光,我们会将曝光日志上传到 Kafka,并 Sink 到数仓,然后通过 ELT 开发相应的底表供使用,但是埋点不是一成不变的,随着产运增加相应的埋点变量,表的字段也会逐渐增多,表结构的频繁变更势必对下游造成影响,为避免频繁变更表结构,我们使用lef 字段储存剩余未解析的埋点变量,无论后期增加多少埋点变量,直接从lef中解析即可。

但是在开发过程中也遇到一些问题,那就是lef中的数据该如何储存?下面为大家一一道来,请看CASE:

起初,lef中字段是以JSON形式存储,但是随着一些不重要的且非埋点事件本身的数据也不像单独放在表中,所以考虑跟lef合并在一起,代码如下:

sql 复制代码
select 
       lef
      ,recv_ts
      ,to_json(named_struct('lef',lef,'recv_ts',recv_ts)) as json_str
from tmp_test where pt = max_pt('tmp_test')
limit 30;

结果如下:

其中,json_str 就是最终字段,但在使用时并不方便,比如解析其中ifAiAnswer_var,代码如下:

sql 复制代码
select get_json_object(get_json_object(lef,'$.lef'),'$.ifAiAnswer_var') 
from table
;

本来 get_json_object 函数支持通过 get_json_object(column,'$.val1.val2') 获取,所以对代码做了修改:

sql 复制代码
select 
       lef
      ,recv_ts
      ,to_json(named_struct('lef',from_json(lef,'map<string,string>'),'recv_ts',recv_ts)) as json_str
from tmp_test where pt = max_pt('tmp_test')
limit 30;

结果如下:

这个时候,就可以根据 path 向下直接获取了。

相关推荐
wudl55661 小时前
flink 1.20 物化表(Materialized Tables)
大数据·flink·linq
InfiSight智睿视界2 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
boonya4 小时前
ChatBox AI 中配置阿里云百炼模型实现聊天对话
人工智能·阿里云·云计算·chatboxai
8K超高清4 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
amhjdx4 小时前
政策东风下:卓玛儿童级健康腻子引领行业升级
大数据
TDengine (老段)4 小时前
TDengine 字符串函数 CONCAT_WS 用户手册
android·大数据·数据库·时序数据库·tdengine·涛思数据
TTGGGFF4 小时前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型
IT 小阿姨(数据库)5 小时前
PostgreSQL 之上的开源时序数据库 TimescaleDB 详解
运维·数据库·sql·postgresql·开源·centos·时序数据库
0南城逆流06 小时前
【STM32】知识点介绍三:哈希算法详解
stm32·嵌入式硬件·哈希算法
sadandbad6 小时前
[vulhub靶机通关]DC-2(rbash绕过_git提权)
网络·sql·web安全·网络安全