pytorch cnn 实现猫狗分类

### 文章目录

  • [@[toc]](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [1. 导入必要的库](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [2. 定义数据集类](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [3. 数据预处理和加载](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [4. 定义 CNN 模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [5. 定义损失函数和优化器](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [6. 训练模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [7. 保存模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [8. 使用模型进行预测](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [9 完整代码](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [10. 总结](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)

1. 导入必要的库

py 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os

2. 定义数据集类

我们将创建一个自定义数据集类来加载猫狗图片。

py 复制代码
class CatDogDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['cat', 'dog']
        self.image_paths = []
        self.labels = []

        # 遍历 cat 和 dog 目录,加载图片路径和标签
        for idx, class_name in enumerate(self.classes):
            class_dir = os.path.join(root_dir, class_name)
            for img_name in os.listdir(class_dir):
                self.image_paths.append(os.path.join(class_dir, img_name))
                self.labels.append(idx)

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')  # 确保图片是 RGB 格式
        label = self.labels[idx]

        if self.transform:
            image = self.transform(image)

        return image, label

3. 数据预处理和加载

定义数据预处理方法,并加载数据集。

py 复制代码
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((64, 64)),  # 调整图片大小
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])

# 加载数据集
train_dataset = CatDogDataset(root_dir='path_to_train_data', transform=transform)
val_dataset = CatDogDataset(root_dir='path_to_val_data', transform=transform)
# 数据加载器

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

4. 定义 CNN 模型

py 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(64 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, 2)
        self.dropout = nn.Dropout(0.5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 64 * 16 * 16)
        x = self.dropout(self.relu(self.fc1(x)))
        x = self.fc2(x)
        return x

model = CNN()

5. 定义损失函数和优化器

py 复制代码
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

6. 训练模型

py 复制代码
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for images, labels in train_loader:
        images, labels = images.to(device), labels.to(device)
        
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()
    
    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")

    # 验证模型
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in val_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    print(f"Validation Accuracy: {100 * correct / total:.2f}%")

7. 保存模型

py 复制代码
torch.save(model.state_dict(), 'cat_dog_classifier.pth')

8. 使用模型进行预测

py 复制代码
# 加载模型
model.load_state_dict(torch.load('cat_dog_classifier.pth'))
model.eval()

# 预测函数
def predict_image(image_path):
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        output = model(image)
        _, predicted = torch.max(output, 1)
    
    return 'cat' if predicted.item() == 0 else 'dog'

# 使用模型进行预测
image_path = 'path_to_test_image.jpg'
prediction = predict_image(image_path)
print(f"The image is a {prediction}")

# 使用模型进行预测
image_path = 'path_to_test_image.jpg'
prediction = predict_image(image_path)
print(f"The image is a {prediction}")

9 完整代码

py 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os

class CatDogDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['cats', 'dogs']
        self.image_paths = []
        self.labels = []

        # 遍历 cat 和 dog 目录,加载图片路径和标签
        for idx, class_name in enumerate(self.classes):
            class_dir = os.path.join(root_dir, class_name)
            num_pets = 0
            for img_name in os.listdir(class_dir):
                self.image_paths.append(os.path.join(class_dir, img_name))
                self.labels.append(idx)
                # print("class_dir : ", img_name)
                # num_pets = num_pets + 1
                # if num_pets >= 5000:
                #     break


    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')  # 确保图片是 RGB 格式
        label = self.labels[idx]

        if self.transform:
            image = self.transform(image)

        return image, label

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((64, 64)),  # 调整图片大小
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])

# 加载数据集
train_dataset = CatDogDataset(root_dir='D:/Cache/dataset/PetImages/train', transform=transform)
val_dataset = CatDogDataset(root_dir='D:/Cache/dataset/PetImages/valid', transform=transform)

# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(64 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, 2)
        self.dropout = nn.Dropout(0.5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 64 * 16 * 16)
        x = self.dropout(self.relu(self.fc1(x)))
        x = self.fc2(x)
        return x

model = CNN()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def train():
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        for images, labels in train_loader:
            images, labels = images.to(device), labels.to(device)
            
            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
        
        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")

        # 验证模型
        model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for images, labels in val_loader:
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        
        print(f"Validation Accuracy: {100 * correct / total:.2f}%")


    torch.save(model.state_dict(), 'cat_dog_classifier.pth')

# 预测函数
def predict_image(image_path):
    
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        output = model(image)
        _, predicted = torch.max(output, 1)
    
    return 'cat' if predicted.item() == 0 else 'dog'


def test():
    # 使用模型进行预测
    # 加载模型
    model.load_state_dict(torch.load('cat_dog_classifier.pth'))
    model.eval()
    image_path = 'D:/Cache/dataset/PetImages/Dog/6.jpg'
    image_path = 'D:/develop/pytorch/dogcat/img/training/dogs/dog1.jpg'
    image_path = 'D:/develop/pytorch/dogcat/img/training/cats/4.jpg'
    prediction = predict_image(image_path)
    print(f"The image is a {prediction}")

import matplotlib.pyplot as plt

def test1():
    image_path = 'D:/develop/pytorch/dogcat/img/training/cats/3.jpg'
    img = Image.open(image_path).convert('RGB')

    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])

    img = transform(img)
    img = img.unsqueeze(0)  # 添加batch维度

    model.load_state_dict(torch.load('cat_dog_classifier.pth'))
    model.eval()
    prediction = predict_image(image_path)

    class_names = ['cat', 'dog']
    print("Predicted class:", prediction)

    plt.imshow(img.squeeze().numpy().transpose((1, 2, 0)))
    plt.show()

if __name__ == '__main__':
    train()
    test1()
复制代码
D:\develop\pytorch\dogcat>python3.7 dogVsCat.py
C:\Users\yosola\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.7_qbz5n2kfra8p0\LocalCache\local-packages\Python37\site-packages\PIL\TiffImagePlugin.py:864: UserWarning: Truncated File Read
  warnings.warn(str(msg))
Epoch [1/10], Loss: 0.5782
Validation Accuracy: 76.25%
Epoch [2/10], Loss: 0.4676
Validation Accuracy: 81.10%
Epoch [3/10], Loss: 0.4201
Validation Accuracy: 84.90%
Epoch [4/10], Loss: 0.3605
Validation Accuracy: 88.25%
Epoch [5/10], Loss: 0.2949
Validation Accuracy: 92.50%
Epoch [6/10], Loss: 0.2234
Validation Accuracy: 95.90%
Epoch [7/10], Loss: 0.1562
Validation Accuracy: 98.00%
Epoch [8/10], Loss: 0.1069
Validation Accuracy: 98.60%
Epoch [9/10], Loss: 0.0907
Validation Accuracy: 99.70%
Epoch [10/10], Loss: 0.0785
Validation Accuracy: 99.50%
Predicted class: cat

10. 总结

我们定义了一个自定义数据集类 CatDogDataset 来加载猫狗图片。

使用 PyTorch 的 DataLoader 加载数据。

定义了一个简单的 CNN 模型进行训练。

保存训练好的模型,并使用模型进行预测。

你可以根据需要调整模型的架构、超参数和数据增强方法。希望这个示例对你有帮助!

相关推荐
毕不了业的硏䆒僧2 分钟前
NVIDIA DGX Spark | Ubuntu cuda13.0安装Pytorch GPU版本
pytorch·ubuntu·spark
海天一色y16 分钟前
基于迁移学习实现宠物分类(oxford-iiit-pet数据集)任务
分类·迁移学习·宠物
shangjian0071 小时前
AI大模型-深度学习-卷积神经网络-残差网络
人工智能·深度学习·cnn
盼小辉丶1 小时前
PyTorch实战(24)——深度强化学习
pytorch·深度学习·强化学习
应用市场1 小时前
CNN池化层深度解析:从原理到PyTorch实现
人工智能·pytorch·python
钮钴禄·爱因斯晨1 小时前
机器学习(二):KNN算法简介及API介绍(分类、回归)
人工智能·算法·机器学习·分类·回归
@BangBang1 小时前
clearml 工具的使用详解
pytorch
逄逄不是胖胖2 小时前
《动手学深度学习》-49Style_Transfer实现
pytorch·python·深度学习
KmjJgWeb10 小时前
工业零件检测与分类——基于YOLOv5的改进模型 Dysample 实现
yolo·分类·数据挖掘
却道天凉_好个秋14 小时前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测