pytorch cnn 实现猫狗分类

### 文章目录

  • [@[toc]](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [1. 导入必要的库](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [2. 定义数据集类](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [3. 数据预处理和加载](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [4. 定义 CNN 模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [5. 定义损失函数和优化器](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [6. 训练模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [7. 保存模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [8. 使用模型进行预测](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [9 完整代码](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [10. 总结](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)

1. 导入必要的库

py 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os

2. 定义数据集类

我们将创建一个自定义数据集类来加载猫狗图片。

py 复制代码
class CatDogDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['cat', 'dog']
        self.image_paths = []
        self.labels = []

        # 遍历 cat 和 dog 目录,加载图片路径和标签
        for idx, class_name in enumerate(self.classes):
            class_dir = os.path.join(root_dir, class_name)
            for img_name in os.listdir(class_dir):
                self.image_paths.append(os.path.join(class_dir, img_name))
                self.labels.append(idx)

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')  # 确保图片是 RGB 格式
        label = self.labels[idx]

        if self.transform:
            image = self.transform(image)

        return image, label

3. 数据预处理和加载

定义数据预处理方法,并加载数据集。

py 复制代码
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((64, 64)),  # 调整图片大小
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])

# 加载数据集
train_dataset = CatDogDataset(root_dir='path_to_train_data', transform=transform)
val_dataset = CatDogDataset(root_dir='path_to_val_data', transform=transform)
# 数据加载器

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

4. 定义 CNN 模型

py 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(64 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, 2)
        self.dropout = nn.Dropout(0.5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 64 * 16 * 16)
        x = self.dropout(self.relu(self.fc1(x)))
        x = self.fc2(x)
        return x

model = CNN()

5. 定义损失函数和优化器

py 复制代码
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

6. 训练模型

py 复制代码
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for images, labels in train_loader:
        images, labels = images.to(device), labels.to(device)
        
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()
    
    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")

    # 验证模型
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in val_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    print(f"Validation Accuracy: {100 * correct / total:.2f}%")

7. 保存模型

py 复制代码
torch.save(model.state_dict(), 'cat_dog_classifier.pth')

8. 使用模型进行预测

py 复制代码
# 加载模型
model.load_state_dict(torch.load('cat_dog_classifier.pth'))
model.eval()

# 预测函数
def predict_image(image_path):
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        output = model(image)
        _, predicted = torch.max(output, 1)
    
    return 'cat' if predicted.item() == 0 else 'dog'

# 使用模型进行预测
image_path = 'path_to_test_image.jpg'
prediction = predict_image(image_path)
print(f"The image is a {prediction}")

# 使用模型进行预测
image_path = 'path_to_test_image.jpg'
prediction = predict_image(image_path)
print(f"The image is a {prediction}")

9 完整代码

py 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os

class CatDogDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['cats', 'dogs']
        self.image_paths = []
        self.labels = []

        # 遍历 cat 和 dog 目录,加载图片路径和标签
        for idx, class_name in enumerate(self.classes):
            class_dir = os.path.join(root_dir, class_name)
            num_pets = 0
            for img_name in os.listdir(class_dir):
                self.image_paths.append(os.path.join(class_dir, img_name))
                self.labels.append(idx)
                # print("class_dir : ", img_name)
                # num_pets = num_pets + 1
                # if num_pets >= 5000:
                #     break


    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')  # 确保图片是 RGB 格式
        label = self.labels[idx]

        if self.transform:
            image = self.transform(image)

        return image, label

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((64, 64)),  # 调整图片大小
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])

# 加载数据集
train_dataset = CatDogDataset(root_dir='D:/Cache/dataset/PetImages/train', transform=transform)
val_dataset = CatDogDataset(root_dir='D:/Cache/dataset/PetImages/valid', transform=transform)

# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(64 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, 2)
        self.dropout = nn.Dropout(0.5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 64 * 16 * 16)
        x = self.dropout(self.relu(self.fc1(x)))
        x = self.fc2(x)
        return x

model = CNN()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def train():
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        for images, labels in train_loader:
            images, labels = images.to(device), labels.to(device)
            
            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
        
        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")

        # 验证模型
        model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for images, labels in val_loader:
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        
        print(f"Validation Accuracy: {100 * correct / total:.2f}%")


    torch.save(model.state_dict(), 'cat_dog_classifier.pth')

# 预测函数
def predict_image(image_path):
    
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        output = model(image)
        _, predicted = torch.max(output, 1)
    
    return 'cat' if predicted.item() == 0 else 'dog'


def test():
    # 使用模型进行预测
    # 加载模型
    model.load_state_dict(torch.load('cat_dog_classifier.pth'))
    model.eval()
    image_path = 'D:/Cache/dataset/PetImages/Dog/6.jpg'
    image_path = 'D:/develop/pytorch/dogcat/img/training/dogs/dog1.jpg'
    image_path = 'D:/develop/pytorch/dogcat/img/training/cats/4.jpg'
    prediction = predict_image(image_path)
    print(f"The image is a {prediction}")

import matplotlib.pyplot as plt

def test1():
    image_path = 'D:/develop/pytorch/dogcat/img/training/cats/3.jpg'
    img = Image.open(image_path).convert('RGB')

    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])

    img = transform(img)
    img = img.unsqueeze(0)  # 添加batch维度

    model.load_state_dict(torch.load('cat_dog_classifier.pth'))
    model.eval()
    prediction = predict_image(image_path)

    class_names = ['cat', 'dog']
    print("Predicted class:", prediction)

    plt.imshow(img.squeeze().numpy().transpose((1, 2, 0)))
    plt.show()

if __name__ == '__main__':
    train()
    test1()
复制代码
D:\develop\pytorch\dogcat>python3.7 dogVsCat.py
C:\Users\yosola\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.7_qbz5n2kfra8p0\LocalCache\local-packages\Python37\site-packages\PIL\TiffImagePlugin.py:864: UserWarning: Truncated File Read
  warnings.warn(str(msg))
Epoch [1/10], Loss: 0.5782
Validation Accuracy: 76.25%
Epoch [2/10], Loss: 0.4676
Validation Accuracy: 81.10%
Epoch [3/10], Loss: 0.4201
Validation Accuracy: 84.90%
Epoch [4/10], Loss: 0.3605
Validation Accuracy: 88.25%
Epoch [5/10], Loss: 0.2949
Validation Accuracy: 92.50%
Epoch [6/10], Loss: 0.2234
Validation Accuracy: 95.90%
Epoch [7/10], Loss: 0.1562
Validation Accuracy: 98.00%
Epoch [8/10], Loss: 0.1069
Validation Accuracy: 98.60%
Epoch [9/10], Loss: 0.0907
Validation Accuracy: 99.70%
Epoch [10/10], Loss: 0.0785
Validation Accuracy: 99.50%
Predicted class: cat

10. 总结

我们定义了一个自定义数据集类 CatDogDataset 来加载猫狗图片。

使用 PyTorch 的 DataLoader 加载数据。

定义了一个简单的 CNN 模型进行训练。

保存训练好的模型,并使用模型进行预测。

你可以根据需要调整模型的架构、超参数和数据增强方法。希望这个示例对你有帮助!

相关推荐
数据知道11 分钟前
机器翻译的分类:规则式、统计式、神经式MT的核心区别
人工智能·分类·机器翻译
瘦的可以下饭了2 小时前
Transformers
pytorch
golitter.2 小时前
pytorch的 Size[3] 和 Size[3,1] 区别
人工智能·pytorch·python
盼小辉丶3 小时前
PyTorch生成式人工智能(24)——使用PyTorch构建Transformer模型
pytorch·深度学习·transformer
旧时光巷7 小时前
【机器学习③】 | CNN篇
人工智能·pytorch·python·机器学习·cnn·卷积神经网络·lenet-5
叫我:松哥12 小时前
python案例:基于python 神经网络cnn和LDA主题分析的旅游景点满意度分析
人工智能·python·神经网络·数据挖掘·数据分析·cnn·课程设计
2202_7567496913 小时前
01 基于sklearn的机械学习-机械学习的分类、sklearn的安装、sklearn数据集及数据集的划分、特征工程(特征提取与无量纲化、特征降维)
人工智能·python·机器学习·分类·sklearn
wow_DG15 小时前
【Pytorch✨】LSTM01 入门
人工智能·pytorch·lstm
roman_日积跬步-终至千里15 小时前
【机器学习】非线性分类算法详解(下):决策树(最佳分裂特征选择的艺术)与支持向量机(最大间隔和核技巧)
决策树·机器学习·分类
808&Heartbreak*16 小时前
CNN实战项目
人工智能·神经网络·cnn