pytorch cnn 实现猫狗分类

### 文章目录

  • [@[toc]](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [1. 导入必要的库](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [2. 定义数据集类](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [3. 数据预处理和加载](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [4. 定义 CNN 模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [5. 定义损失函数和优化器](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [6. 训练模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [7. 保存模型](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [8. 使用模型进行预测](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [9 完整代码](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)
  • [10. 总结](#文章目录 @[toc] 1. 导入必要的库 2. 定义数据集类 3. 数据预处理和加载 4. 定义 CNN 模型 5. 定义损失函数和优化器 6. 训练模型 7. 保存模型 8. 使用模型进行预测 9 完整代码 10. 总结)

1. 导入必要的库

py 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os

2. 定义数据集类

我们将创建一个自定义数据集类来加载猫狗图片。

py 复制代码
class CatDogDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['cat', 'dog']
        self.image_paths = []
        self.labels = []

        # 遍历 cat 和 dog 目录,加载图片路径和标签
        for idx, class_name in enumerate(self.classes):
            class_dir = os.path.join(root_dir, class_name)
            for img_name in os.listdir(class_dir):
                self.image_paths.append(os.path.join(class_dir, img_name))
                self.labels.append(idx)

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')  # 确保图片是 RGB 格式
        label = self.labels[idx]

        if self.transform:
            image = self.transform(image)

        return image, label

3. 数据预处理和加载

定义数据预处理方法,并加载数据集。

py 复制代码
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((64, 64)),  # 调整图片大小
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])

# 加载数据集
train_dataset = CatDogDataset(root_dir='path_to_train_data', transform=transform)
val_dataset = CatDogDataset(root_dir='path_to_val_data', transform=transform)
# 数据加载器

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

4. 定义 CNN 模型

py 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(64 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, 2)
        self.dropout = nn.Dropout(0.5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 64 * 16 * 16)
        x = self.dropout(self.relu(self.fc1(x)))
        x = self.fc2(x)
        return x

model = CNN()

5. 定义损失函数和优化器

py 复制代码
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

6. 训练模型

py 复制代码
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for images, labels in train_loader:
        images, labels = images.to(device), labels.to(device)
        
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()
    
    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")

    # 验证模型
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for images, labels in val_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    print(f"Validation Accuracy: {100 * correct / total:.2f}%")

7. 保存模型

py 复制代码
torch.save(model.state_dict(), 'cat_dog_classifier.pth')

8. 使用模型进行预测

py 复制代码
# 加载模型
model.load_state_dict(torch.load('cat_dog_classifier.pth'))
model.eval()

# 预测函数
def predict_image(image_path):
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        output = model(image)
        _, predicted = torch.max(output, 1)
    
    return 'cat' if predicted.item() == 0 else 'dog'

# 使用模型进行预测
image_path = 'path_to_test_image.jpg'
prediction = predict_image(image_path)
print(f"The image is a {prediction}")

# 使用模型进行预测
image_path = 'path_to_test_image.jpg'
prediction = predict_image(image_path)
print(f"The image is a {prediction}")

9 完整代码

py 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os

class CatDogDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['cats', 'dogs']
        self.image_paths = []
        self.labels = []

        # 遍历 cat 和 dog 目录,加载图片路径和标签
        for idx, class_name in enumerate(self.classes):
            class_dir = os.path.join(root_dir, class_name)
            num_pets = 0
            for img_name in os.listdir(class_dir):
                self.image_paths.append(os.path.join(class_dir, img_name))
                self.labels.append(idx)
                # print("class_dir : ", img_name)
                # num_pets = num_pets + 1
                # if num_pets >= 5000:
                #     break


    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image_path = self.image_paths[idx]
        image = Image.open(image_path).convert('RGB')  # 确保图片是 RGB 格式
        label = self.labels[idx]

        if self.transform:
            image = self.transform(image)

        return image, label

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((64, 64)),  # 调整图片大小
    transforms.ToTensor(),  # 转换为张量
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])

# 加载数据集
train_dataset = CatDogDataset(root_dir='D:/Cache/dataset/PetImages/train', transform=transform)
val_dataset = CatDogDataset(root_dir='D:/Cache/dataset/PetImages/valid', transform=transform)

# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(64 * 16 * 16, 512)
        self.fc2 = nn.Linear(512, 2)
        self.dropout = nn.Dropout(0.5)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 64 * 16 * 16)
        x = self.dropout(self.relu(self.fc1(x)))
        x = self.fc2(x)
        return x

model = CNN()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def train():
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        for images, labels in train_loader:
            images, labels = images.to(device), labels.to(device)
            
            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
        
        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}")

        # 验证模型
        model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for images, labels in val_loader:
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        
        print(f"Validation Accuracy: {100 * correct / total:.2f}%")


    torch.save(model.state_dict(), 'cat_dog_classifier.pth')

# 预测函数
def predict_image(image_path):
    
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        output = model(image)
        _, predicted = torch.max(output, 1)
    
    return 'cat' if predicted.item() == 0 else 'dog'


def test():
    # 使用模型进行预测
    # 加载模型
    model.load_state_dict(torch.load('cat_dog_classifier.pth'))
    model.eval()
    image_path = 'D:/Cache/dataset/PetImages/Dog/6.jpg'
    image_path = 'D:/develop/pytorch/dogcat/img/training/dogs/dog1.jpg'
    image_path = 'D:/develop/pytorch/dogcat/img/training/cats/4.jpg'
    prediction = predict_image(image_path)
    print(f"The image is a {prediction}")

import matplotlib.pyplot as plt

def test1():
    image_path = 'D:/develop/pytorch/dogcat/img/training/cats/3.jpg'
    img = Image.open(image_path).convert('RGB')

    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])

    img = transform(img)
    img = img.unsqueeze(0)  # 添加batch维度

    model.load_state_dict(torch.load('cat_dog_classifier.pth'))
    model.eval()
    prediction = predict_image(image_path)

    class_names = ['cat', 'dog']
    print("Predicted class:", prediction)

    plt.imshow(img.squeeze().numpy().transpose((1, 2, 0)))
    plt.show()

if __name__ == '__main__':
    train()
    test1()
复制代码
D:\develop\pytorch\dogcat>python3.7 dogVsCat.py
C:\Users\yosola\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.7_qbz5n2kfra8p0\LocalCache\local-packages\Python37\site-packages\PIL\TiffImagePlugin.py:864: UserWarning: Truncated File Read
  warnings.warn(str(msg))
Epoch [1/10], Loss: 0.5782
Validation Accuracy: 76.25%
Epoch [2/10], Loss: 0.4676
Validation Accuracy: 81.10%
Epoch [3/10], Loss: 0.4201
Validation Accuracy: 84.90%
Epoch [4/10], Loss: 0.3605
Validation Accuracy: 88.25%
Epoch [5/10], Loss: 0.2949
Validation Accuracy: 92.50%
Epoch [6/10], Loss: 0.2234
Validation Accuracy: 95.90%
Epoch [7/10], Loss: 0.1562
Validation Accuracy: 98.00%
Epoch [8/10], Loss: 0.1069
Validation Accuracy: 98.60%
Epoch [9/10], Loss: 0.0907
Validation Accuracy: 99.70%
Epoch [10/10], Loss: 0.0785
Validation Accuracy: 99.50%
Predicted class: cat

10. 总结

我们定义了一个自定义数据集类 CatDogDataset 来加载猫狗图片。

使用 PyTorch 的 DataLoader 加载数据。

定义了一个简单的 CNN 模型进行训练。

保存训练好的模型,并使用模型进行预测。

你可以根据需要调整模型的架构、超参数和数据增强方法。希望这个示例对你有帮助!

相关推荐
超龄超能程序猿1 小时前
YOLOv8 五大核心模型:从检测到分类的介绍
yolo·分类·数据挖掘
廋到被风吹走5 小时前
【数据库】【MySQL】分库分表策略 分类、优势与短板
数据库·mysql·分类
studytosky8 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
IT老兵202510 小时前
PyTorch DDP多GPU训练实践问题总结
人工智能·pytorch·python·分布式训练·ddp
Piar1231sdafa11 小时前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
ASD123asfadxv13 小时前
基于YOLO11的汽车车灯状态识别与分类_C3k2-wConv改进_1
分类·数据挖掘·汽车
心疼你的一切15 小时前
计算机视觉_CNN与目标检测实战
人工智能·神经网络·目标检测·计算机视觉·cnn
All The Way North-15 小时前
AdaGrad 深度解析:从数学原理到 PyTorch 实现,为什么它在稠密问题中“学不动”?
pytorch·深度学习·adagrad算法·梯度下降优化算法
Java后端的Ai之路16 小时前
【分析式AI】-机器学习的分类以及学派
人工智能·机器学习·分类·aigc·分析式ai
aini_lovee16 小时前
使用BP神经网络进行故障数据分类的方法和MATLAB实现
神经网络·matlab·分类