ml5.js框架实现AI图片识别

ml5.js

ml5.js 提供了简单的接口来加载和使用机器学习模型,如图像分类、文本生成、姿态估计等,不需要深入理解底层的数学原理或复杂的编程技巧
ml5.js 构建在 TensorFlow.js 之上,提供了一系列预训练模型和简易的 API 接口

图片识别

先进行一个简单的图片识别demo (这里我使用的是汽车图片)

  1. 首先创建一个index.html
  2. 引入必要的库

创建index.html

复制代码
<!DOCTYPE html>
<html lang="en">
	<head>
		<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.11.1/p5.js"></script>
		<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.11.1/addons/p5.sound.min.js"></script>
		<script src="https://unpkg.com/ml5@1/dist/ml5.min.js"></script>
		<meta charset="utf-8" />
	</head>
	<style>
		html,
		body {
			margin: 0;
			padding: 0;
		}
		canvas {
			display: block;
		}
	</style>
	<body>
		<main></main>
		<script src="sketch.js"></script>
	</body>
</html>

创建sketch.js

复制代码
// 图像分类器
let classifier
// 图像
let img
// 结果
let result

function setup() {
	// 创建幕布
	createCanvas(400, 400)
	// 图像分类器初始化完成后调用classify函数
	if (classifier) {
		classifier.classify(img, (res, error) => {
			if (error) {
				console.error(error)
				return
			}
			result = res
			console.log(res)
		})
	} else {
		console.error('图像分类器未初始化完成')
	}
}

function draw() {
	// 绘制背景
	background(220)
	if (img) {
		image(img, 0, 0, width, height)
	}
	// 绘制结果
	if (result) {
		fill(255)
		stroke(0)
		textSize(18)
		label = 'Label: ' + result[0].label
		confidence = 'Confidence: ' + nf(result[0].confidence, 0, 2)
		text(label, 10, 360)
		text(confidence, 10, 380)
	}
}
function preload() {
	// 图像分类器初始化
	classifier = ml5.imageClassifier('MobileNet', function () {
		console.log('图像分类器初始化完成')
	})
	img = loadImage('https://picsum.photos/id/133/2742/1828')
}
function gotResult(res, error) {
	if (error) {
		console.error(error)
		return
	}
	result = res
	console.log(results)
}

ml5官网

相关推荐
大咖分享课几秒前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
爱吃烤鸡翅的酸菜鱼2 分钟前
IDEA高效开发:Database Navigator插件安装与核心使用指南
java·开发语言·数据库·编辑器·intellij-idea·database
然我10 分钟前
不用 Redux 也能全局状态管理?看我用 useReducer+Context 搞个 Todo 应用
前端·javascript·react.js
lucky_lyovo11 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn15 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
前端小巷子15 分钟前
Web 实时通信:从短轮询到 WebSocket
前端·javascript·面试
nju_spy19 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
心情好的小球藻39 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
静心问道42 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域44 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源