使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(数据分析篇)

7.3. 数据监控与生成本地知识库
  • 目的:监控新生成的小红书文案,记录每一次生成的小红书文案风格。后续根据输入topic,检索与某一topic有关的文案,可以根据先前的文案风格,生成类似风格的文案。
  • 实现思路:
    • 1.要实现文件监控功能,需要使用watchdog库。watchdog是一个Python库,用于监控文件系统的变化。它提供了多种事件类型,如文件创建、修改、删除等,可以用来监控文件的变化。启动一个线程,实时监控xiaohongshu_drafts目录下的文件变化,当有新文件生成时,调用process_new_file(file_path)函数生成知识库。
    • 2.process_new_file(file_path)函数读取新文件中的内容,并调用generate_knowledge_base()函数对新生成的文案进行文本分割、对象转换、向量化等一系列操作来生成知识库。
  • 代码实现:
python 复制代码
'''
Author: yeffky
Date: 2025-02-12 13:29:31
LastEditTime: 2025-02-17 14:28:11
'''
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoTokenizer
from langchain.schema import Document
from text2vec import SentenceModel
import time
import os


class NewFileHandler(FileSystemEventHandler):
    def on_created(self, event):
        if not event.is_directory:
            file_path = event.src_path
            process_new_file(file_path)  # 处理新文件
            print(f"新增文件已加载: {file_path}")

def process_new_file(file_path):
    # 加载文档(假设为txt格式)
    loader = TextLoader(file_path, encoding="utf-8")
    documents = loader.load()
    print(type(documents[0]))

    # 从 Hugging Face 加载一个标记器
    tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
    text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
        tokenizer,
        chunk_size=256,
        chunk_overlap=0,
        separators=['---']
    )
    # 进行文本分块
    text_chunks = text_splitter.split_text(documents[0].page_content)
    # 将分块结果转换为文档对象列表
    chunk_docs = [Document(page_content=chunk) for chunk in text_chunks]

    # 向量化并更新索引
    embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh")
    vector_store_dir = "./vector_store"
    if os.path.exists(vector_store_dir):
        vector_store = FAISS.load_local(vector_store_dir, embeddings, allow_dangerous_deserialization=True)
        vector_store.add_documents(chunk_docs)
    else:
        vector_store = FAISS.from_documents(chunk_docs, embeddings)
    vector_store.save_local(vector_store_dir)
    
def start_observer():
    observer = Observer()
    observer.schedule(NewFileHandler(), path="./xiaohongshu_drafts", recursive=False)
    observer.start()
    try:
        while True:
        # 每隔一小时检查一次
            time.sleep(1)
    except KeyboardInterrupt:
        # 当用户按下 Ctrl+C 时,停止观察者
        observer.stop()
    # 等待观察者线程结束
    observer.join()
    
if __name__ == "__main__":
    start_observer()
7.4. 数据分析
  • 目的:根据先前爬取数据,与本地知识库联动,调用deepseek api完成小红书文案生成。
  • 实现思路:
    • 要通过deepseek生成文案首先需要构建prompt和提问词,首先从文件中加载prompt和提问词模板,然后将前期爬取的商品数据以及本地知识库中的文案数据作为输入,构建prompt和提问词。
  • 代码实现:
python 复制代码
'''
Author: yeffky
Date: 2025-02-11 11:17:04
LastEditTime: 2025-02-17 15:35:13
'''
import json
import os
import requests
from datetime import datetime
import random
from langchain import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from text2vec import SentenceModel

os.environ['HF_ENDPOINT'] = 'hf-mirror.com'


 # 获取今天的日期
today_date = datetime.now().strftime('%Y-%m-%d')
topic = "手机推荐"

# 1. 读取JSON文件
def read_json_file(filename):
    with open(f'data/{filename}', 'r', encoding='utf-8') as f:
        return json.load(f)

# 2. 构造分析提示词
def build_prompt(item):
    with open('./docs/prompt.txt', 'r', encoding='utf-8') as f:
        prompt = f.read()
    # 创建文本嵌入对象
    embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh")
    # 检索知识库(扩大检索范围)
    vector_store = FAISS.load_local("./vector_store", embeddings, allow_dangerous_deserialization=True)
    retrieved_docs = vector_store.similarity_search(topic, k=5)  # 检索Top 5
    
    # 随机选择3个不同风格的参考文案
    random.shuffle(retrieved_docs)
    selected_docs = retrieved_docs[:3]
    
    return f"""{prompt}, 
{json.dumps(item, ensure_ascii=False, indent=2)} 
**根据以下文案风格,做出创新**:
    {selected_docs}

**注意**:
    - 在结尾加入提示,数据截至当前日期:{today_date}
    - 每一段内容使用 --- 进行分割
"""

def build_preset():
    with open('./docs/preset.txt', 'r', encoding='utf-8') as f:
        preset = f.read()
    # 创建文本嵌入对象
    embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh")
    print("embeddings加载完毕")
    # 检索知识库(扩大检索范围)
    vector_store = FAISS.load_local("./vector_store", embeddings, allow_dangerous_deserialization=True)
    retrieved_docs = vector_store.similarity_search(topic, k=5)  # 检索Top 5
    
    # 随机选择3个不同风格的参考文案
    random.shuffle(retrieved_docs)
    selected_docs = retrieved_docs[:3]

    preset += f"""\n **主题**:{topic}
    
    **创新要求**:
    - 使用{random.choice(["轻松幽默", "专业严谨", "犀利吐槽"])}的语气
    - 加入{["emoji表情", "热门梗", "互动提问"]}元素
    """
    
    print(preset)
    return preset

# 3. 调用Deepseek API
def get_deepseek_response(preset, prompt, api_key):
    url = "https://api.deepseek.com/chat/completions"
    headers = {
        "Authorization": f"Bearer {api_key}",
        'Content-Type': 'application/json',
        'Accept': 'application/json',
    }
    payload = json.dumps({
        "messages": [
            {
                "content": preset, 
                "role": "system"
            },
            {
                "content": prompt,
                "role": "user"
            }
        ],
        "model": "deepseek-reasoner",
        "frequency_penalty": 0,
        "max_tokens": 2048,
        "presence_penalty": 0,
        "response_format": {
            "type": "text"
        },
        "stop": None,
        "stream": False,
        "stream_options": None,
        "temperature": 1,
        "top_p": 1,
        "tools": None,
        "tool_choice": "none",
        "logprobs": False,
        "top_logprobs": None
    })
    response = None
    while not response:
        try:
            response = requests.post(url, data=payload, headers=headers, timeout=100)
            response.raise_for_status()
            if not response.json():
                response = None
                print("没有收到响应,重试中...")
            else:
                print("收到响应,内容为:\n" + response.json()['choices'][0]['message']['content'])
        except requests.exceptions.RequestException as e:
            print(f"请求失败:{str(e)}")
            response = None
    return response.json()['choices'][0]['message']['content']

# 4. 保存文案文件
def save_copywriting(content):
    base_path = f'./xiaohongshu_drafts/'
    filename = f"小红书_推广文案_千战系列" + today_date + ".txt"
    print(content)
    with open(base_path + filename, 'w', encoding='utf-8') as f:
        f.write(content)
    print(f"文案已保存至:{filename}")

# 主流程
def analysis_data():
    # 配置参数
    API_KEY = os.getenv("DEEPSEEK_API_KEY")  # 从环境变量获取API密钥
   
    # 在文件名后加上今天的日期
    JSON_FILE = f'goods_{today_date}.json'
    
    # 读取数据
    items = read_json_file(JSON_FILE)
    
    print(f"正在处理:{JSON_FILE}")
    
    # 构造提示词
    prompt = build_prompt(items)
    preset = build_preset()
    
    # 获取AI响应
    try:
        response = get_deepseek_response(preset, prompt, API_KEY)
        save_copywriting(response)
    except Exception as e:
        print(f"处理失败:{str(e)}")

if __name__ == "__main__":
    analysis_data()
相关推荐
有个人神神叨叨36 分钟前
OpenAI发布的《Addendum to GPT-4o System Card: Native image generation》文件的详尽笔记
人工智能·笔记
林九生1 小时前
【Python】Browser-Use:让 AI 替你掌控浏览器,开启智能自动化新时代!
人工智能·python·自动化
liuyunshengsir2 小时前
AI Agent 实战:搭建个人在线旅游助手
人工智能·旅游
Shawn_Shawn2 小时前
大模型微调介绍
人工智能
TiAmo zhang2 小时前
DeepSeek-R1 模型现已在亚马逊云科技上提供
人工智能·云计算·aws
liruiqiang052 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习
Erica_zhase2 小时前
GPT-4o推出的原生图像生成功能升级后有点东西!
人工智能
青花瓷2 小时前
智谱大模型(ChatGLM3)PyCharm的调试指南
人工智能·python·大模型·智谱大模型
说私域2 小时前
基于开源AI大模型与S2B2C模式的线下服务型门店增长策略研究——以AI智能名片与小程序源码技术为核心
大数据·人工智能·小程序·开源
V_HY147623 小时前
AI碰一碰发视频获客工具,系统开发逻辑详细解析
大数据·人工智能·新媒体运营·流量运营