Codeforces Round 1004 (Div. 1) C. Bitwise Slides
题意:
-
给你一个数组,三个整数
P,Q,R
-
每一个操作使得
P,Q,R
三个数中的某个数异或s[i]
-
每一步操作后需要保证三个数中至少两个数相同,问合法操作的种类数
思路:
首先考虑二维 d p dp dp,假设当前三个数为上一次操作后三个数为 i,i,j
,那么 d p i , j dp_{i,j} dpi,j代表上次操作产生i,i,j
的种类数
假设当前的数为s[i]
,那么那么有以下转移方程:
d p [ 0 ] [ 0 ] × 3 → d p [ 0 ] [ s [ i ] ] d p [ i ] [ j ] → d p [ i ] [ j ⊕ s [ i ] ] if j ⊕ s [ i ] ≠ i d p [ i ] [ j ] × 2 → d p [ j ] [ i ] if j ⊕ s [ i ] = i \begin{aligned} dp[0][0] \times 3 &\rightarrow dp[0][s[i]] \\ dp[i][j] &\rightarrow dp[i][j \oplus s[i]] \quad \text{if} \ j \oplus s[i] \neq i \\ dp[i][j] \times 2 &\rightarrow dp[j][i] \quad \text{if} \ j \oplus s[i] = i \end{aligned} dp[0][0]×3dp[i][j]dp[i][j]×2→dp[0][s[i]]→dp[i][j⊕s[i]]if j⊕s[i]=i→dp[j][i]if j⊕s[i]=i
我们发现,只记录 y = i ⊕ j y=i \oplus j y=i⊕j可以使得
d p ′ [ y ] = ∑ i = j ⊕ y d p [ i ] [ j ] dp^{'}[y]=\sum _{i=j \oplus y} dp[i][j] dp′[y]=i=j⊕y∑dp[i][j]
这样,转移方程变为:
d p [ 0 ] × 3 → d p [ s [ i ] ] d p [ s [ i ] ] → 2 × d p [ s [ i ] ] d p [ i ] → d p [ i ⊕ s [ i ] ] for all i \begin{aligned} dp[0] \times 3 &\rightarrow dp[s[i]] \\ dp[s[i]] &\rightarrow 2 \times dp[s[i]] \\ dp[i] &\rightarrow dp[i \oplus s[i]] \quad \text{for all} \ i \end{aligned} dp[0]×3dp[s[i]]dp[i]→dp[s[i]]→2×dp[s[i]]→dp[i⊕s[i]]for all i
由此我们可以写出以下代码:
cpp
map<int, int> dp;
dp[s[0]] = 3;
for (int i = 1; i < n; i++)
{
map<int, int> tem;
for (auto j : dp)
{
if (j.first == s[i])
tem[s[i]] = (tem[s[i]] + (dp[j.first] * 2) % mod) % mod;
if (j.first != 0)
tem[j.first ^ s[i]] = (tem[j.first ^ s[i]] + dp[j.first]) % mod;
else
tem[j.first ^ s[i]] = (tem[j.first ^ s[i]] + (dp[j.first] * 3) % mod) % mod;
}
dp = tem;
}
我们发现设置一个tag
能将所有 d p [ x ] dp[x] dp[x] 整体变为 d p [ x ⊕ s [ i ] ] dp[x \oplus s[i]] dp[x⊕s[i]],于是有了以下优化
cpp
map<int, int> dp;
dp[s[0]] = 3;
for (int i = 1; i < n; i++)
dp[now] = (dp[now] * 3) % mod, dp[now] = (dp[now] + (dp[now ^ s[i]] * 2) % mod) % mod, now ^= s[i];
从左到右枚举所有数后 ,答案为 ∑ d p [ i ] \sum dp[i] ∑dp[i]
cpp
#include <bits/stdc++.h>
using namespace std;
#define int long long int
#define Paddi ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
const int mod = 1e9 + 7;
signed main()
{
Paddi;
int T;
cin >> T;
while (T--)
{
int n;
cin >> n;
vector<int> s(n);
for (int i = 0; i < n; i++)
cin >> s[i];
int ans = 0;
int now = 0;
map<int, int> dp;
dp[s[0]] = 3;
for (int i = 1; i < n; i++)
dp[now] = (dp[now] * 3) % mod, dp[now] = (dp[now] + (dp[now ^ s[i]] * 2) % mod) % mod, now ^= s[i];
for (auto i : dp)
ans = (ans + i.second) % mod;
cout << ans % mod << endl;
}
return 0;
}