仿 Sora 之形,借物理模拟之技绘视频之彩

来自麻省理工学院、斯坦福大学、哥伦比亚大学以及康奈尔大学的研究人员携手开源了一款创新的3D交互视频模型------PhysDreamer(以下简称"PD")。PD与OpenAI旗下的Sora相似,能够借助物理模拟技术来生成视频,这意味着PD所生成的视频蕴含着诸多物理世界的特性。

例如,用手去触摸一盆花后,花朵会左右摇摆直至缓慢停止。PD可以准确地捕捉到物体很多微妙的动态变化和复杂的交互细节,生成的视频也就更加精准、细腻。可以查看链接视频

https://live.csdn.net/v/464063

PD主要通过视频生成模型学习到的动态先验知识,来评估静态3D对象的物理材质属性。在大量视频训练数据的帮助下,可捕捉到物体外观和动态之间的关系。

从而帮助PD推断出驱动物体动态行为的物理材质属性,即使在缺乏地面真实材质数据的情况下也没问题,这也体现了PD强大的物理模拟和评估能力。

视频生成模型作为PD的关键组成部分,通过深度学习海量视频数据中的场景外观与动力学关系,为后续的物理材质模拟以及交互式3D动力合成奠定了坚实的基础。该模型主要借助深度神经网络来构建视频帧之间的时空依赖关系,由编码器和解码器构成。其中,编码器的作用是将输入的视频帧转化为低维表示,从而精准捕捉图像中的核心特征。

解码器则将这些低维表示解码为逼真的视频帧。通过训练过程,视频生成模型能够学习到输入视频帧与目标视频帧之间的映射关系,从而实现逐帧的视频生成。主要流程分为以下四大块。

**外观建模:**主要用来学习物体的外观变化模式,通过观察大量的视频数据,使PD能够捕捉到物体的纹理、颜色、形状等特征,并将它们编码为低维表示。这些编码后的表示可以用于后续的物理材料特性估计和3D动力学合成。

**动力学建模:**通过观察物体在视频中的运动轨迹,模型能够捕捉到物体的速度、加速度以及其他动力学特征。

**先验知识提取:**通过分析编码后的表示和解码后的视频帧,模型能够提取出物体外观和动力学之间的关系,包括外部力对物体的影响、物体的弹性等特征,为后续的物理材质模拟提供重要基础。

物体响应预测

PD具备物体响应预测功能,能够依据输入的交互刺激,精准预测物体的反应。该模型将交互刺激与所学习到的外观及动力学模式相结合,从而生成物体在全新交互情境下的运动轨迹与形变状况。这使得PD所生成的视频能够根据用户的输入,呈现出静态3D物体在特定交互刺激下高度逼真的动态响应效果。

在现实世界里,物体的物理行为是由其材质属性所决定的,诸如刚度、弹性和质量等。而在虚拟环境中对这些属性进行模拟时,会借助"杨氏模量"来进行评估与调整。例如,较高的杨氏模量意味着材料更为坚硬,而较低的杨氏模量则表示材料较为柔软。

为了在虚拟环境中复现现实世界中的物理知识,PD采用了材质场表示法来实现对3D对象物理属性的逼真模拟。材质场是一种连续函数,能够为3D场景中的每一个点分配一个"杨氏模量"物理属性值。

物理材质场采用了隐式神经场来表示,这是一种可微分的模型,能够优化以匹配参考视频中的动态。这种表示方法不仅能够精确地捕捉物体的物理属性,还能够与物理模拟过程无缝集成。

例如,当用户在虚拟环境中挤压一朵虚拟花朵时,花朵的变形和回弹方式会非常接近真实世界的表现。

尤其是在缓慢运动表征方面,PD模型比DreamGaussian4D、PhysGaussian、Real Capture模型表现更好。

相关推荐
格林威1 分钟前
工业检测机器视觉为啥非用工业相机?普通相机差在哪?
人工智能·数码相机·yolo·计算机视觉·视觉检测·相机
索迪迈科技6 分钟前
深度解析:从DeepSeek V3.1到K2 Think的“专才”模型架构
人工智能·ai·语言模型
工藤学编程7 分钟前
零基础学AI大模型之从0到1调用大模型API
人工智能
先做个垃圾出来………11 分钟前
Dify开源AI框架介绍
人工智能·开源
带娃的IT创业者16 分钟前
《AI大模型应知应会100篇》第68篇:移动应用中的大模型功能开发 —— 用 React Native 打造你的语音笔记摘要 App
人工智能·笔记·react native
Godspeed Zhao24 分钟前
自动驾驶中的传感器技术42——Radar(3)
人工智能·机器学习·自动驾驶
Godspeed Zhao26 分钟前
自动驾驶中的传感器技术41——Radar(2)
人工智能·机器学习·自动驾驶
非门由也2 小时前
《sklearn机器学习——数据预处理》类别特征编码
人工智能·机器学习·sklearn
FairyGirlhub2 小时前
神经网络的初始化:权重与偏置的数学策略
人工智能·深度学习·神经网络
大写-凌祁7 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github