Kafka中commitAsync的使用与实例解析

在使用Apache Kafka进行消息处理时,正确管理偏移量(offset)是确保数据一致性和可靠性的重要环节。Kafka提供了多种方式来提交偏移量,其中commitAsync()方法是一种高效且灵活的选择。本文将通过一个完整的实例,详细介绍如何在Kafka中使用commitAsync()方法来异步提交偏移量。

  1. 为什么需要异步提交偏移量?
    在Kafka中,偏移量用于记录消费者消费消息的位置。默认情况下,Kafka消费者会自动提交偏移量,但这种方式可能会导致数据丢失或重复消费。通过将enable.auto.commit设置为false,并手动调用commitAsync()方法,我们可以更精确地控制偏移量的提交时机,从而提高系统的可靠性和性能。
  2. 示例项目配置
    在开始之前,我们需要配置Kafka的生产者和消费者属性。以下是示例代码中的配置类ExampleConfig,它为生产者和消费者提供了基本的配置参数。
    java复制
    package com.logicbig.example;

import java.util.Properties;

public class ExampleConfig {

public static final String BROKERS = "localhost:9092";

复制代码
public static Properties getProducerProps() {
    Properties props = new Properties();
    props.put("bootstrap.servers", BROKERS);
    props.put("acks", "all");
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    return props;
}

public static Properties getConsumerProps() {
    Properties props = new Properties();
    props.setProperty("bootstrap.servers", BROKERS);
    props.setProperty("group.id", "testGroup");
    props.setProperty("enable.auto.commit", "false");
    props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    return props;
}

}

  1. 创建Kafka主题

在运行消费者和生产者之前,我们需要创建一个Kafka主题。以下代码展示了如何使用AdminClient创建一个名为example-topic-2020-5-28的主题,并设置其分区数为1。

java复制

package com.logicbig.example;

import org.apache.kafka.clients.admin.AdminClient;

import org.apache.kafka.clients.admin.AdminClientConfig;

import org.apache.kafka.clients.admin.NewTopic;

import java.util.Collections;

import java.util.Properties;

import java.util.stream.Collectors;

public class TopicCreator {

public static void main(String[] args) throws Exception {

createTopic("example-topic-2020-5-28", 1);

}

复制代码
private static void createTopic(String topicName, int numPartitions) throws Exception {
    Properties config = new Properties();
    config.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, ExampleConfig.BROKERS);
    AdminClient admin = AdminClient.create(config);

    boolean alreadyExists = admin.listTopics().names().get().stream()
            .anyMatch(existingTopicName -> existingTopicName.equals(topicName));

    if (alreadyExists) {
        System.out.printf("topic already exits: %s%n", topicName);
    } else {
        System.out.printf("creating topic: %s%n", topicName);
        NewTopic newTopic = new NewTopic(topicName, numPartitions, (short) 1);
        admin.createTopics(Collections.singleton(newTopic)).all().get();
    }

    System.out.println("-- describing topic --");
    admin.describeTopics(Collections.singleton(topicName)).all().get()
            .forEach((topic, desc) -> {
                System.out.println("Topic: " + topic);
                System.out.printf("Partitions: %s, partition ids: %s%n", desc.partitions().size(),
                        desc.partitions()
                                .stream()
                                .map(p -> Integer.toString(p.partition()))
                                .collect(Collectors.joining(",")));
            });

    admin.close();
}

}

运行上述代码后,将创建一个名为example-topic-2020-5-28的主题,分区数为1。

  1. 使用commitAsync()提交偏移量

接下来,我们将通过一个完整的消费者和生产者示例,展示如何使用commitAsync()方法异步提交偏移量。

生产者代码

生产者代码将向example-topic-2020-5-28主题发送4条消息。

java复制

package com.logicbig.example;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.ProducerRecord;

public class CommitAsyncExample {

private static String TOPIC_NAME = "example-topic-2020-5-28";

复制代码
private static void sendMessages() {
    Properties producerProps = ExampleConfig.getProducerProps();
    KafkaProducer<String, String> producer = new KafkaProducer<>(producerProps);

    for (int i = 0; i < 4; i++) {
        String value = "message-" + i;
        System.out.printf("Sending message topic: %s, value: %s%n", TOPIC_NAME, value);
        producer.send(new ProducerRecord<>(TOPIC_NAME, value));
    }

    producer.flush();
    producer.close();
}

public static void main(String[] args) throws Exception {
    sendMessages();
}

}

消费者代码

消费者代码将订阅example-topic-2020-5-28主题,并使用commitAsync()方法异步提交偏移量。

java复制

package com.logicbig.example;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.kafka.clients.consumer.OffsetAndMetadata;

import org.apache.kafka.common.TopicPartition;

import java.time.Duration;

import java.util.*;

public class CommitAsyncExample {

private static String TOPIC_NAME = "example-topic-2020-5-28";

private static KafkaConsumer<String, String> consumer;

private static TopicPartition topicPartition;

复制代码
public static void main(String[] args) throws Exception {
    Properties consumerProps = ExampleConfig.getConsumerProps();
    consumer = new KafkaConsumer<>(consumerProps);
    topicPartition = new TopicPartition(TOPIC_NAME, 0);
    consumer.assign(Collections.singleton(topicPartition));

    printOffsets("before consumer loop", consumer, topicPartition);
    sendMessages();
    startConsumer();
}

private static void startConsumer() {
    while (true) {
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(5));
        for (ConsumerRecord<String, String> record : records) {
            System.out.printf("consumed: key = %s, value = %s, partition id= %s, offset = %s%n",
                    record.key(), record.value(), record.partition(), record.offset());
        }

        if (records.isEmpty()) {
            System.out.println("-- terminating consumer --");
            break;
        }

        printOffsets("before commitAsync() call", consumer, topicPartition);
        consumer.commitAsync();
        printOffsets("after commitAsync() call", consumer, topicPartition);
    }

    printOffsets("after consumer loop", consumer, topicPartition);
}

private static void printOffsets(String message, KafkaConsumer<String, String> consumer, TopicPartition topicPartition) {
    Map<TopicPartition, OffsetAndMetadata> committed = consumer.committed(new HashSet<>(Arrays.asList(topicPartition)));
    OffsetAndMetadata offsetAndMetadata = committed.get(topicPartition);
    long position = consumer.position(topicPartition);
    System.out.printf("Offset info %s, Committed: %s, current position %s%n", message,
            offsetAndMetadata == null ? null : offsetAndMetadata.offset(), position);
}

private static void sendMessages() {
    Properties producerProps = ExampleConfig.getProducerProps();
    KafkaProducer<String, String> producer = new KafkaProducer<>(producerProps);

    for (int i = 0; i < 4; i++) {
        String value = "message-" + i;
        System.out.printf("Sending message topic: %s, value: %s%n", TOPIC_NAME, value);
        producer.send(new ProducerRecord<>(TOPIC_NAME, value));
    }

    producer.flush();
    producer.close();
}

}

  1. 运行结果分析

运行上述消费者代码后,输出结果如下:

复制

Offset info before consumer loop, Committed: null, current position 0

Sending message topic: example-topic-2020-5-28, value: message-0

Sending message topic: example-topic-2020-5-28, value: message-1

Sending message topic: example-topic-2020-5-28, value: message-2

Sending message topic: example-topic-2020-5-28, value: message-3

consumed: key = null, value = message-0, partition id= 0, offset = 0

consumed: key = null, value = message-1, partition id= 0, offset = 1

consumed: key = null, value = message-2, partition id= 0, offset = 2

consumed: key = null, value = message-3, partition id= 0, offset = 3

Offset info before commitAsync() call, Committed

相关推荐
前端世界1 小时前
HarmonyOS开发实战:鸿蒙分布式生态构建与多设备协同发布全流程详解
分布式·华为·harmonyos
DavidSoCool2 小时前
RabbitMQ使用topic Exchange实现微服务分组订阅
分布式·微服务·rabbitmq
掘金-我是哪吒3 小时前
分布式微服务系统架构第158集:JavaPlus技术文档平台日更-JVM基础知识
jvm·分布式·微服务·架构·系统架构
东窗西篱梦3 小时前
Redis集群部署指南:高可用与分布式实践
数据库·redis·分布式
Acrel_Fanny3 小时前
Acrel-1000系列分布式光伏监控系统在湖北荆门一马光彩大市场屋顶光伏发电项目中应用
分布式
xufwind4 小时前
spark standlone 集群离线安装
大数据·分布式·spark
半新半旧5 小时前
Redis集群和 zookeeper 实现分布式锁的优势和劣势
redis·分布式·zookeeper
亲爱的非洲野猪5 小时前
Kafka “假死“现象深度解析与解决方案
分布式·kafka
CodeWithMe5 小时前
【Note】《Kafka: The Definitive Guide》第三章: Kafka 生产者深入解析:如何高效写入 Kafka 消息队列
分布式·kafka
虾条_花吹雪5 小时前
2、Connecting to Kafka
分布式·ai·kafka