ReDistribution plan细节

In a Greenplum cluster with 4 segments, when you perform a join between two tables (sales and customer) that are distributed differently, the query plan will involve redistributing data to ensure that related rows are on the same segment. Here's a detailed breakdown of how the redistribution query plan might look:

Tables and Distribution Keys

  • sales table : Distributed by sale_id.

  • customer table : Distributed by cust_id.

Query

sql 复制代码
SELECT s.sale_id, s.amount, c.cust_name
FROM sales s
JOIN customer c ON s.cust_id = c.cust_id;

Query Plan Breakdown

  1. Initial Scan:

    • Each segment scans its local portion of the sales and customer tables.

    • Segment 1 : Scans sales and customer data assigned to it.

    • Segment 2 : Scans sales and customer data assigned to it.

    • Segment 3 : Scans sales and customer data assigned to it.

    • Segment 4 : Scans sales and customer data assigned to it.

  2. Redistribute Motion:

    • Since the sales table is distributed by sale_id and the customer table is distributed by cust_id, the join condition s.cust_id = c.cust_id requires that tuples from sales be redistributed by cust_id.

    • The query plan will include a redistribute motion operator to redistribute the sales table based on cust_id.

  3. Redistribution Execution:

    • The redistribute motion operator will redistribute the sales table across all segments based on the cust_id column.

    • Each segment will receive a portion of the sales table that matches its portion of the customer table.

  4. Local Join:

    • After redistribution, each segment will perform a local join between the redistributed sales data and its local customer data.

    • Segment 1 : Joins redistributed sales data with local customer data.

    • Segment 2 : Joins redistributed sales data with local customer data.

    • Segment 3 : Joins redistributed sales data with local customer data.

    • Segment 4 : Joins redistributed sales data with local customer data.

  5. Gather Motion:

    • The results from each segment are gathered back to the master node.

    • The master node combines the results from all segments to produce the final query result.

Example Query Plan

Here's a simplified example of what the query plan might look like:

复制代码
Gather Motion 4:1  (slice1; segments: 4)
  ->  Hash Join
        Hash Cond: (s.cust_id = c.cust_id)
        ->  Redistribute Motion 4:4  (slice2; segments: 4)
            Hash Key: s.cust_id
            ->  Seq Scan on sales s
        ->  Seq Scan on customer c

Explanation

  1. Gather Motion 4:1:

    • Collects the final results from all 4 segments and combines them on the master node.
  2. Hash Join:

    • Performs a hash join on the cust_id column between the sales and customer tables.
  3. Redistribute Motion 4:4:

    • Redistributes the sales table across all 4 segments based on the cust_id column.
  4. Seq Scan on sales s:

    • Each segment performs a sequential scan on its local portion of the sales table.
  5. Seq Scan on customer c:

    • Each segment performs a sequential scan on its local portion of the customer table.

Conclusion

In this query plan, the redistribution of the sales table based on cust_id ensures that related rows are on the same segment, allowing for efficient local joins. The results from each segment are then gathered back to the master node to produce the final result. This approach leverages Greenplum's MPP architecture to achieve parallel processing and efficient query execution.

相关推荐
风一样的美狼子2 分钟前
仓颉语言 LinkedList 链表实现深度解析
java·服务器·前端
deephub3 分钟前
构建有记忆的 AI Agent:SQLite 存储 + 向量检索完整方案示例
数据库·人工智能·sqlite·大语言模型·向量检索·智能体
无敌最俊朗@7 分钟前
SQlite:列级,表级约束
数据库
Empty_77715 分钟前
Keepalived双机热备
linux·git·github
wanhengidc19 分钟前
云手机 基于云计算的虚拟手机
运维·服务器·游戏·智能手机·云计算
不剪发的Tony老师2 小时前
Mathesar:一款基于PostgreSQL的在线电子表格
数据库·postgresql·电子表格
华普微HOPERF5 小时前
Matter协议,如何塑造更宜居、流畅的智能家居网络?
服务器·网络·智能家居
万邦科技Lafite5 小时前
京东按图搜索京东商品(拍立淘) API (.jd.item_search_img)快速抓取数据
开发语言·前端·数据库·python·电商开放平台·京东开放平台
金仓拾光集6 小时前
__金仓数据库平替MongoDB实战:从多模兼容到高可用落地__
数据库·mongodb·数据库平替用金仓·金仓数据库
北邮-吴怀玉6 小时前
6.1.2.2 大数据方法论与实践指南-离线任务SQL 任务开发规范
大数据·数据库·sql