ReDistribution plan细节

In a Greenplum cluster with 4 segments, when you perform a join between two tables (sales and customer) that are distributed differently, the query plan will involve redistributing data to ensure that related rows are on the same segment. Here's a detailed breakdown of how the redistribution query plan might look:

Tables and Distribution Keys

  • sales table : Distributed by sale_id.

  • customer table : Distributed by cust_id.

Query

sql 复制代码
SELECT s.sale_id, s.amount, c.cust_name
FROM sales s
JOIN customer c ON s.cust_id = c.cust_id;

Query Plan Breakdown

  1. Initial Scan:

    • Each segment scans its local portion of the sales and customer tables.

    • Segment 1 : Scans sales and customer data assigned to it.

    • Segment 2 : Scans sales and customer data assigned to it.

    • Segment 3 : Scans sales and customer data assigned to it.

    • Segment 4 : Scans sales and customer data assigned to it.

  2. Redistribute Motion:

    • Since the sales table is distributed by sale_id and the customer table is distributed by cust_id, the join condition s.cust_id = c.cust_id requires that tuples from sales be redistributed by cust_id.

    • The query plan will include a redistribute motion operator to redistribute the sales table based on cust_id.

  3. Redistribution Execution:

    • The redistribute motion operator will redistribute the sales table across all segments based on the cust_id column.

    • Each segment will receive a portion of the sales table that matches its portion of the customer table.

  4. Local Join:

    • After redistribution, each segment will perform a local join between the redistributed sales data and its local customer data.

    • Segment 1 : Joins redistributed sales data with local customer data.

    • Segment 2 : Joins redistributed sales data with local customer data.

    • Segment 3 : Joins redistributed sales data with local customer data.

    • Segment 4 : Joins redistributed sales data with local customer data.

  5. Gather Motion:

    • The results from each segment are gathered back to the master node.

    • The master node combines the results from all segments to produce the final query result.

Example Query Plan

Here's a simplified example of what the query plan might look like:

复制代码
Gather Motion 4:1  (slice1; segments: 4)
  ->  Hash Join
        Hash Cond: (s.cust_id = c.cust_id)
        ->  Redistribute Motion 4:4  (slice2; segments: 4)
            Hash Key: s.cust_id
            ->  Seq Scan on sales s
        ->  Seq Scan on customer c

Explanation

  1. Gather Motion 4:1:

    • Collects the final results from all 4 segments and combines them on the master node.
  2. Hash Join:

    • Performs a hash join on the cust_id column between the sales and customer tables.
  3. Redistribute Motion 4:4:

    • Redistributes the sales table across all 4 segments based on the cust_id column.
  4. Seq Scan on sales s:

    • Each segment performs a sequential scan on its local portion of the sales table.
  5. Seq Scan on customer c:

    • Each segment performs a sequential scan on its local portion of the customer table.

Conclusion

In this query plan, the redistribution of the sales table based on cust_id ensures that related rows are on the same segment, allowing for efficient local joins. The results from each segment are then gathered back to the master node to produce the final result. This approach leverages Greenplum's MPP architecture to achieve parallel processing and efficient query execution.

相关推荐
格调UI成品13 分钟前
预警系统安全体系构建:数据加密、权限分级与误报过滤方案
大数据·运维·网络·数据库·安全·预警
盘古开天16661 小时前
如何用废弃电脑变成服务器搭建web网站(公网访问零成本)
服务器·电脑·免费公网ip
xuanzdhc4 小时前
Linux 基础IO
linux·运维·服务器
愚润求学4 小时前
【Linux】网络基础
linux·运维·网络
bantinghy4 小时前
Linux进程单例模式运行
linux·服务器·单例模式
心平愈三千疾5 小时前
通俗理解JVM细节-面试篇
java·jvm·数据库·面试
小和尚同志5 小时前
29.4k!使用 1Panel 来管理你的服务器吧
linux·运维
帽儿山的枪手5 小时前
为什么Linux需要3种NAT地址转换?一探究竟
linux·网络协议·安全
shadon1789 天前
回答 如何通过inode client的SSLVPN登录之后,访问需要通过域名才能打开的服务
linux
AWS官方合作商9 天前
AWS ACM 重磅上线:公有 SSL/TLS 证书现可导出,突破 AWS 边界! (突出新功能的重要性和突破性)
服务器·https·ssl·aws