ReDistribution plan细节

In a Greenplum cluster with 4 segments, when you perform a join between two tables (sales and customer) that are distributed differently, the query plan will involve redistributing data to ensure that related rows are on the same segment. Here's a detailed breakdown of how the redistribution query plan might look:

Tables and Distribution Keys

  • sales table : Distributed by sale_id.

  • customer table : Distributed by cust_id.

Query

sql 复制代码
SELECT s.sale_id, s.amount, c.cust_name
FROM sales s
JOIN customer c ON s.cust_id = c.cust_id;

Query Plan Breakdown

  1. Initial Scan:

    • Each segment scans its local portion of the sales and customer tables.

    • Segment 1 : Scans sales and customer data assigned to it.

    • Segment 2 : Scans sales and customer data assigned to it.

    • Segment 3 : Scans sales and customer data assigned to it.

    • Segment 4 : Scans sales and customer data assigned to it.

  2. Redistribute Motion:

    • Since the sales table is distributed by sale_id and the customer table is distributed by cust_id, the join condition s.cust_id = c.cust_id requires that tuples from sales be redistributed by cust_id.

    • The query plan will include a redistribute motion operator to redistribute the sales table based on cust_id.

  3. Redistribution Execution:

    • The redistribute motion operator will redistribute the sales table across all segments based on the cust_id column.

    • Each segment will receive a portion of the sales table that matches its portion of the customer table.

  4. Local Join:

    • After redistribution, each segment will perform a local join between the redistributed sales data and its local customer data.

    • Segment 1 : Joins redistributed sales data with local customer data.

    • Segment 2 : Joins redistributed sales data with local customer data.

    • Segment 3 : Joins redistributed sales data with local customer data.

    • Segment 4 : Joins redistributed sales data with local customer data.

  5. Gather Motion:

    • The results from each segment are gathered back to the master node.

    • The master node combines the results from all segments to produce the final query result.

Example Query Plan

Here's a simplified example of what the query plan might look like:

复制代码
Gather Motion 4:1  (slice1; segments: 4)
  ->  Hash Join
        Hash Cond: (s.cust_id = c.cust_id)
        ->  Redistribute Motion 4:4  (slice2; segments: 4)
            Hash Key: s.cust_id
            ->  Seq Scan on sales s
        ->  Seq Scan on customer c

Explanation

  1. Gather Motion 4:1:

    • Collects the final results from all 4 segments and combines them on the master node.
  2. Hash Join:

    • Performs a hash join on the cust_id column between the sales and customer tables.
  3. Redistribute Motion 4:4:

    • Redistributes the sales table across all 4 segments based on the cust_id column.
  4. Seq Scan on sales s:

    • Each segment performs a sequential scan on its local portion of the sales table.
  5. Seq Scan on customer c:

    • Each segment performs a sequential scan on its local portion of the customer table.

Conclusion

In this query plan, the redistribution of the sales table based on cust_id ensures that related rows are on the same segment, allowing for efficient local joins. The results from each segment are then gathered back to the master node to produce the final result. This approach leverages Greenplum's MPP architecture to achieve parallel processing and efficient query execution.

相关推荐
程序员老舅14 分钟前
C++高并发精髓:无锁队列深度解析
linux·c++·内存管理·c/c++·原子操作·无锁队列
雨中风华27 分钟前
Linux, macOS系统实现远程目录访问(等同于windows平台xFsRedir软件的目录重定向)
linux·windows·macos
IvorySQL33 分钟前
PostgreSQL 分区表的 ALTER TABLE 语句执行机制解析
数据库·postgresql·开源
·云扬·43 分钟前
MySQL 8.0 Redo Log 归档与禁用实战指南
android·数据库·mysql
IT邦德1 小时前
Oracle 26ai DataGuard 搭建(RAC到单机)
数据库·oracle
爱吃生蚝的于勒1 小时前
【Linux】进程信号之捕捉(三)
linux·运维·服务器·c语言·数据结构·c++·学习
The森1 小时前
Linux IO 模型纵深解析 01:从 Unix 传统到 Linux 内核的 IO 第一性原理
linux·服务器·c语言·经验分享·笔记·unix
惊讶的猫1 小时前
redis分片集群
数据库·redis·缓存·分片集群·海量数据存储·高并发写
不爱缺氧i1 小时前
完全卸载MariaDB
数据库·mariadb
期待のcode1 小时前
Redis的主从复制与集群
运维·服务器·redis