自动驾驶之BEV概述

1、为什么需要BEV?

自动驾驶需要目标在3D空间的位置信息,传统检测为2D图像上检测目标然后IPM投影到3D。所以无论如何3D结果才是我们最终想要的。

对于单个传感器:通过单目3D、深度估计等手段好像能解决这个问题,但是往往精度不高。

对于自动驾驶,往往需要360度的多个摄像头协同工作。将多个摄像头的结果进行融合也是一大问题。所以把图象特征转到BEV空间下直接进行3D位置预测,一则可以解决2D到3D的投影问题,二则预测结果可以直接用于下游的决策,省去多个传感器的融合。

2、什么是BEV的核心?

我们知道3D空间投影2D图象是一对一的,而2D图象投影3D空间则是一对多的射线上。所以如何把多个图象的2D特征表达到对应3D的BEV空间特征,进行视图转换 ,则是BEV的核心工作。

当前主要有代表性的两种方法:

1、基于深度分布估计的:代表方法为BEVDet

2、基于交叉注意力的:代表方法为BEVFormer

在BEV的基础上,往往加入时序融合多任务学习多模态监督等手段,由此发展出各种BEV的变形。

3、BEV特点

输入:来自不同角度相机的多张图像,覆盖360°视野范围。

输出:BEV视图下的各种感知结果,比如物体,道路,车道线,语义栅格等。

算法:图像到BEV视图转换,包括稠密和稀疏两种方式。

稠密有BEVDet和BEVFormer。有的方法则是针对具体的任务,比如3D物体检测,直接生成稀疏的BEV视图下的感知结果,比如DETR3D和PETR

4、测试数据集

对于BEV感知来说,目前比较常用的数据集是nuScenes。

nuScenes数据库发布了多个测试任务,包括物体检测跟踪 ,运动轨迹预测点云全景分割 以及路径规划

3D目标检测任务的性能指标主要有两个:mAPNDS

mAP (mean Average Precision)是目标检测中常用的性能指标,它对Precision-Recall(P-R)曲线进行采样,计算每个类别出平均的Precision。在计算P-R曲线时,需要匹配算法预测的物体框和标注的真值物体框。nuScenes中采用BEV视图下物体框的2D中心点距离来进行匹配,而不是传统的Intersection-of-Union(IoU),这样可以提高小物体的匹配率。

NDS(nuScenes Detection Score)在mAP的基础上,增加了物体框预测质量的指标。这些指标包括物体框的位置,大小,朝向,速度以及其它属性。与mAP相比,NDS可以更全面的评价3D目标检测算法的优劣。

对于BEV的发展历程,以及各种BEV的方法介绍,参考以下综述:BEV感知综述

相关推荐
奔跑吧邓邓子14 分钟前
DeepSeek 赋能智能教育知识图谱:从构建到应用的革命性突破
人工智能·知识图谱·应用·deepseek·智能教育
Mantanmu16 分钟前
Python训练day40
人工智能·python·机器学习
ss.li22 分钟前
TripGenie:畅游济南旅行规划助手:个人工作纪实(二十二)
javascript·人工智能·python
小天才才32 分钟前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
MPCTHU39 分钟前
机器学习的数学基础:神经网络
机器学习
新加坡内哥谈技术1 小时前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
西猫雷婶2 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao2 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力2 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java2 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python