自动驾驶之BEV概述

1、为什么需要BEV?

自动驾驶需要目标在3D空间的位置信息,传统检测为2D图像上检测目标然后IPM投影到3D。所以无论如何3D结果才是我们最终想要的。

对于单个传感器:通过单目3D、深度估计等手段好像能解决这个问题,但是往往精度不高。

对于自动驾驶,往往需要360度的多个摄像头协同工作。将多个摄像头的结果进行融合也是一大问题。所以把图象特征转到BEV空间下直接进行3D位置预测,一则可以解决2D到3D的投影问题,二则预测结果可以直接用于下游的决策,省去多个传感器的融合。

2、什么是BEV的核心?

我们知道3D空间投影2D图象是一对一的,而2D图象投影3D空间则是一对多的射线上。所以如何把多个图象的2D特征表达到对应3D的BEV空间特征,进行视图转换 ,则是BEV的核心工作。

当前主要有代表性的两种方法:

1、基于深度分布估计的:代表方法为BEVDet

2、基于交叉注意力的:代表方法为BEVFormer

在BEV的基础上,往往加入时序融合多任务学习多模态监督等手段,由此发展出各种BEV的变形。

3、BEV特点

输入:来自不同角度相机的多张图像,覆盖360°视野范围。

输出:BEV视图下的各种感知结果,比如物体,道路,车道线,语义栅格等。

算法:图像到BEV视图转换,包括稠密和稀疏两种方式。

稠密有BEVDet和BEVFormer。有的方法则是针对具体的任务,比如3D物体检测,直接生成稀疏的BEV视图下的感知结果,比如DETR3D和PETR

4、测试数据集

对于BEV感知来说,目前比较常用的数据集是nuScenes。

nuScenes数据库发布了多个测试任务,包括物体检测跟踪 ,运动轨迹预测点云全景分割 以及路径规划

3D目标检测任务的性能指标主要有两个:mAPNDS

mAP (mean Average Precision)是目标检测中常用的性能指标,它对Precision-Recall(P-R)曲线进行采样,计算每个类别出平均的Precision。在计算P-R曲线时,需要匹配算法预测的物体框和标注的真值物体框。nuScenes中采用BEV视图下物体框的2D中心点距离来进行匹配,而不是传统的Intersection-of-Union(IoU),这样可以提高小物体的匹配率。

NDS(nuScenes Detection Score)在mAP的基础上,增加了物体框预测质量的指标。这些指标包括物体框的位置,大小,朝向,速度以及其它属性。与mAP相比,NDS可以更全面的评价3D目标检测算法的优劣。

对于BEV的发展历程,以及各种BEV的方法介绍,参考以下综述:BEV感知综述

相关推荐
青松@FasterAI25 分钟前
【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)
人工智能·自然语言处理
AIGC大时代40 分钟前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
硅谷秋水41 分钟前
GAIA-2:用于自动驾驶的可控多视图生成世界模型
人工智能·机器学习·自动驾驶
偶尔微微一笑1 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
深度之眼1 小时前
2025时间序列都有哪些创新点可做——总结篇
人工智能·深度学习·机器学习·时间序列
晓数1 小时前
【硬核干货】JetBrains AI Assistant 干货笔记
人工智能·笔记·jetbrains·ai assistant
jndingxin1 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
Sherlock Ma2 小时前
PDFMathTranslate:基于LLM的PDF文档翻译及双语对照的工具【使用教程】
人工智能·pytorch·语言模型·pdf·大模型·机器翻译·deepseek
知舟不叙2 小时前
OpenCV中的SIFT特征提取
人工智能·opencv·计算机视觉
kadog2 小时前
PubMed PDF下载 cloudpmc-viewer-pow逆向
前端·javascript·人工智能·爬虫·pdf