自动驾驶之BEV概述

1、为什么需要BEV?

自动驾驶需要目标在3D空间的位置信息,传统检测为2D图像上检测目标然后IPM投影到3D。所以无论如何3D结果才是我们最终想要的。

对于单个传感器:通过单目3D、深度估计等手段好像能解决这个问题,但是往往精度不高。

对于自动驾驶,往往需要360度的多个摄像头协同工作。将多个摄像头的结果进行融合也是一大问题。所以把图象特征转到BEV空间下直接进行3D位置预测,一则可以解决2D到3D的投影问题,二则预测结果可以直接用于下游的决策,省去多个传感器的融合。

2、什么是BEV的核心?

我们知道3D空间投影2D图象是一对一的,而2D图象投影3D空间则是一对多的射线上。所以如何把多个图象的2D特征表达到对应3D的BEV空间特征,进行视图转换 ,则是BEV的核心工作。

当前主要有代表性的两种方法:

1、基于深度分布估计的:代表方法为BEVDet

2、基于交叉注意力的:代表方法为BEVFormer

在BEV的基础上,往往加入时序融合多任务学习多模态监督等手段,由此发展出各种BEV的变形。

3、BEV特点

输入:来自不同角度相机的多张图像,覆盖360°视野范围。

输出:BEV视图下的各种感知结果,比如物体,道路,车道线,语义栅格等。

算法:图像到BEV视图转换,包括稠密和稀疏两种方式。

稠密有BEVDet和BEVFormer。有的方法则是针对具体的任务,比如3D物体检测,直接生成稀疏的BEV视图下的感知结果,比如DETR3D和PETR

4、测试数据集

对于BEV感知来说,目前比较常用的数据集是nuScenes。

nuScenes数据库发布了多个测试任务,包括物体检测跟踪 ,运动轨迹预测点云全景分割 以及路径规划

3D目标检测任务的性能指标主要有两个:mAPNDS

mAP (mean Average Precision)是目标检测中常用的性能指标,它对Precision-Recall(P-R)曲线进行采样,计算每个类别出平均的Precision。在计算P-R曲线时,需要匹配算法预测的物体框和标注的真值物体框。nuScenes中采用BEV视图下物体框的2D中心点距离来进行匹配,而不是传统的Intersection-of-Union(IoU),这样可以提高小物体的匹配率。

NDS(nuScenes Detection Score)在mAP的基础上,增加了物体框预测质量的指标。这些指标包括物体框的位置,大小,朝向,速度以及其它属性。与mAP相比,NDS可以更全面的评价3D目标检测算法的优劣。

对于BEV的发展历程,以及各种BEV的方法介绍,参考以下综述:BEV感知综述

相关推荐
mit6.82432 分钟前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域1 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
Moshow郑锴1 小时前
机器学习相关算法:回溯算法 贪心算法 回归算法(线性回归) 算法超参数 多项式时间 朴素贝叶斯分类算法
算法·机器学习·回归
GoGeekBaird2 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
别惹CC3 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei5 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴10 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能