FPGA+GPU+CPU国产化人工智能平台

平台采用国产化FPGA+GPU+CPU构建嵌入式多核异构智算终端,可形成FPGA+GPU、FPGA+CPU、CPU+GPU等组合模式,形成低功耗、高可扩展性的硬件系统,结合使用场景灵活搭配,已有算法架构可快速移植,接口灵活搭配,具备部署灵活、功耗和算力性价比高、支持人工智能推理应用部署等特点。

FPGA+GPU+CPU多核异构平台架构示意图

前面板实物图

前面板包括开机按键、可编程通用串口(TTL)、Type-C扩展口(可扩接显示器、键盘鼠标等)、HDMI-TX、HDMI-RX、ETH1(千兆以太网口1)、ETH2(千兆以太网口2)、USB3.0、2个USB2.0接口、ACT指示灯、POWER指示灯。

后面板实物图

后面板接口包括4路SDI输入接口,TF卡槽、CPU-UART、GL9-JTAG(亿海微GL9下载程序接口)、DC24V电源输入接口。

产品应用

FPGA+GPU+CPU人工智能平台凭借各组件优势协同,展现出强大多元的应用场景能力,兼具FPGA的灵活可编程、可针对不同任务快速定制硬件逻辑实现高效数据预处理的特点,GPU强大的并行计算能力能加速深度学习等复杂算法的运算,极大提升处理速度,还有CPU善于统筹协调、精准管理任务流程与资源分配的长处。

平台广泛覆盖智能安防、自动驾驶、工业制造、医疗健康、教育科研、金融商贸、城市建设等众多领域,可高效处理图像、数据、传感等各类信息,精准完成监测、识别、分析、决策等复杂任务,全方位助力各行业实现智能化升级。

在智慧安防领域,可以部署在监控系统中,实时分析视频流,识别异常行为和潜在威胁,其强大的AI计算能力使得安防系统能够快速响应,提高安全防护的效率和准确性。

在自动化和智能制造领域,可以快速准确地识别和分类产品,能够处理高分辨率图像数据,通过深度学习算法实现高精度的视觉检测和分类,提高生产效率和质量控制水平。

在自动驾驶领域,自动驾驶汽车需要依靠各种传感器(如摄像头、雷达等)收集周围环境的数据,并进行实时处理,以做出正确的驾驶决策,如避障、识别交通标志和信号灯等。

相关推荐
乾元1 分钟前
基于时序数据的异常预测——短期容量与拥塞的提前感知
运维·开发语言·网络·人工智能·python·自动化·运维开发
Elastic 中国社区官方博客10 分钟前
Elasticsearch:构建一个 AI 驱动的电子邮件钓鱼检测
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
IT_陈寒11 分钟前
Vite 5大优化技巧:让你的构建速度飙升50%,开发者都在偷偷用!
前端·人工智能·后端
l1t15 分钟前
利用DeepSeek计算abcde五人排成一队,要使c在ab 之间,有几种排法
人工智能·组合数学·deepseek
阿拉斯攀登15 分钟前
电子签名:笔迹特征比对核心算法详解
人工智能·算法·机器学习·电子签名·汉王
说私域17 分钟前
基于开源链动2+1模式、AI智能名片与S2B2C商城小程序的运营创新研究
人工智能·小程序
weixin_4462608520 分钟前
Agentic Frontend: 灵活的AI助手与聊天机器人构建平台
人工智能·机器人
墨_浅-20 分钟前
教育/培训行业智能体应用分类及知识库检索模型微调
人工智能·分类·数据挖掘
这儿有一堆花21 分钟前
机械硬盘的核心物理机制与存储逻辑
硬件工程
金融小师妹22 分钟前
AI量化视角:美11月CPI数据冲击下的美联储降息预期鸽派与资产定价重构
大数据·人工智能·深度学习