FPGA+GPU+CPU国产化人工智能平台

平台采用国产化FPGA+GPU+CPU构建嵌入式多核异构智算终端,可形成FPGA+GPU、FPGA+CPU、CPU+GPU等组合模式,形成低功耗、高可扩展性的硬件系统,结合使用场景灵活搭配,已有算法架构可快速移植,接口灵活搭配,具备部署灵活、功耗和算力性价比高、支持人工智能推理应用部署等特点。

FPGA+GPU+CPU多核异构平台架构示意图

前面板实物图

前面板包括开机按键、可编程通用串口(TTL)、Type-C扩展口(可扩接显示器、键盘鼠标等)、HDMI-TX、HDMI-RX、ETH1(千兆以太网口1)、ETH2(千兆以太网口2)、USB3.0、2个USB2.0接口、ACT指示灯、POWER指示灯。

后面板实物图

后面板接口包括4路SDI输入接口,TF卡槽、CPU-UART、GL9-JTAG(亿海微GL9下载程序接口)、DC24V电源输入接口。

产品应用

FPGA+GPU+CPU人工智能平台凭借各组件优势协同,展现出强大多元的应用场景能力,兼具FPGA的灵活可编程、可针对不同任务快速定制硬件逻辑实现高效数据预处理的特点,GPU强大的并行计算能力能加速深度学习等复杂算法的运算,极大提升处理速度,还有CPU善于统筹协调、精准管理任务流程与资源分配的长处。

平台广泛覆盖智能安防、自动驾驶、工业制造、医疗健康、教育科研、金融商贸、城市建设等众多领域,可高效处理图像、数据、传感等各类信息,精准完成监测、识别、分析、决策等复杂任务,全方位助力各行业实现智能化升级。

在智慧安防领域,可以部署在监控系统中,实时分析视频流,识别异常行为和潜在威胁,其强大的AI计算能力使得安防系统能够快速响应,提高安全防护的效率和准确性。

在自动化和智能制造领域,可以快速准确地识别和分类产品,能够处理高分辨率图像数据,通过深度学习算法实现高精度的视觉检测和分类,提高生产效率和质量控制水平。

在自动驾驶领域,自动驾驶汽车需要依靠各种传感器(如摄像头、雷达等)收集周围环境的数据,并进行实时处理,以做出正确的驾驶决策,如避障、识别交通标志和信号灯等。

相关推荐
007tg6 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报6 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe996 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………7 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房8 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck8 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭9 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库9 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别
Yingjun Mo10 小时前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论