FPGA+GPU+CPU国产化人工智能平台

平台采用国产化FPGA+GPU+CPU构建嵌入式多核异构智算终端,可形成FPGA+GPU、FPGA+CPU、CPU+GPU等组合模式,形成低功耗、高可扩展性的硬件系统,结合使用场景灵活搭配,已有算法架构可快速移植,接口灵活搭配,具备部署灵活、功耗和算力性价比高、支持人工智能推理应用部署等特点。

FPGA+GPU+CPU多核异构平台架构示意图

前面板实物图

前面板包括开机按键、可编程通用串口(TTL)、Type-C扩展口(可扩接显示器、键盘鼠标等)、HDMI-TX、HDMI-RX、ETH1(千兆以太网口1)、ETH2(千兆以太网口2)、USB3.0、2个USB2.0接口、ACT指示灯、POWER指示灯。

后面板实物图

后面板接口包括4路SDI输入接口,TF卡槽、CPU-UART、GL9-JTAG(亿海微GL9下载程序接口)、DC24V电源输入接口。

产品应用

FPGA+GPU+CPU人工智能平台凭借各组件优势协同,展现出强大多元的应用场景能力,兼具FPGA的灵活可编程、可针对不同任务快速定制硬件逻辑实现高效数据预处理的特点,GPU强大的并行计算能力能加速深度学习等复杂算法的运算,极大提升处理速度,还有CPU善于统筹协调、精准管理任务流程与资源分配的长处。

平台广泛覆盖智能安防、自动驾驶、工业制造、医疗健康、教育科研、金融商贸、城市建设等众多领域,可高效处理图像、数据、传感等各类信息,精准完成监测、识别、分析、决策等复杂任务,全方位助力各行业实现智能化升级。

在智慧安防领域,可以部署在监控系统中,实时分析视频流,识别异常行为和潜在威胁,其强大的AI计算能力使得安防系统能够快速响应,提高安全防护的效率和准确性。

在自动化和智能制造领域,可以快速准确地识别和分类产品,能够处理高分辨率图像数据,通过深度学习算法实现高精度的视觉检测和分类,提高生产效率和质量控制水平。

在自动驾驶领域,自动驾驶汽车需要依靠各种传感器(如摄像头、雷达等)收集周围环境的数据,并进行实时处理,以做出正确的驾驶决策,如避障、识别交通标志和信号灯等。

相关推荐
诸葛箫声3 小时前
十类图片深度学习提升准确率(0.9317)
人工智能·深度学习
救救孩子把3 小时前
11-机器学习与大模型开发数学教程-第1章1-3 极限与连续性
人工智能·数学·机器学习
OG one.Z3 小时前
01_机器学习初步
人工智能·机器学习
HyperAI超神经3 小时前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克
每天学一点儿4 小时前
感知机:单层,多层(二分类,多分类)
人工智能·算法
wan5555cn4 小时前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活
nju_spy4 小时前
华为AI岗 -- 笔试(一)
人工智能·深度学习·机器学习·华为·笔试·dbscan·掩码多头自注意力
LiJieNiub5 小时前
YOLO-V1 与 YOLO-V2 核心技术解析:目标检测的迭代突破
人工智能·yolo·目标检测
初学小刘5 小时前
深度学习在目标检测中的应用与挑战
人工智能·深度学习·目标检测
AKAMAI6 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云原生·云计算