数据分析和数据挖掘的工作内容

基本的数据分析工作通常包含以下几个方面的内容:

  1. 确定目标(输入):理解业务,确定指标口径。
  2. 获取数据:数据仓库(SQL提数)、电子表格、三方接口、网络爬虫、开放数据集等。
  3. 清洗数据:包括对缺失值、重复值、异常值的处理以及相关的预处理(格式化、离散化、二值化等)。
  4. 数据透视:排序、统计、分组聚合、交叉表、透视表等 。
  5. 数据呈现(输出):数据可视化,发布工作成果(数据分析报告)。
  6. 分析洞察(后续):解释数据的变化,提出对应的方案。

深入的数据挖掘工作通常包含以下几个方面的内容:

  1. 确定目标(输入):理解业务,明确挖掘目标。
  2. 数据准备:数据采集、数据描述、数据探索、质量判定等。
  3. 数据加工:提取数据、清洗数据、数据变换、特殊编码、降维、特征选择等。
  4. 数据建模:模型比较、模型选择、算法应用。
  5. 模型评估:交叉检验、参数调优、结果评价。
  6. 模型部署(输出):模型落地、业务改进、运营监控、报告撰写。
相关推荐
云天徽上3 小时前
【数据可视化-28】2017-2025 年每月产品零售价数据可视化分析
机器学习·信息可视化·数据挖掘·数据分析·零售
Guheyunyi4 小时前
智能照明系统:照亮智慧生活的多重价值
大数据·前端·人工智能·物联网·信息可视化·生活
用户199701080184 小时前
深入解析淘宝商品详情 API 接口:功能、使用与实践指南
大数据·爬虫·数据挖掘
databook5 小时前
『Plotly实战指南』--样式定制高级篇
python·数据分析·数据可视化
云天徽上5 小时前
【数据可视化-27】全球网络安全威胁数据可视化分析(2015-2024)
人工智能·安全·web安全·机器学习·信息可视化·数据分析
CodeJourney.6 小时前
DeepSeek与WPS的动态数据可视化图表构建
数据库·人工智能·信息可视化
dundunmm7 小时前
【每天一个知识点】如何解决大模型幻觉(hallucination)问题?
人工智能·数据挖掘·大模型
Miu(数分版)7 小时前
PowerBi中REMOVEFILTERS怎么使用?
数据分析·产品运营·powerbi
lilye667 小时前
精益数据分析(18/126):权衡数据运用,精准把握创业方向
数据挖掘·数据分析
云天徽上7 小时前
【数据可视化-30】Netflix电影和电视节目数据集可视化分析
人工智能·机器学习·信息可视化·数据挖掘