神经网络——梯度下溢

1.梯度下溢问题是什么?

在低精度(如float16)训练中出现的梯度下溢问题是指在进行梯度计算和更新时,由于数值精度较低,梯度值可能变得非常小,以至于接近或低于浮点数表示的最小非零值。这种情况下,梯度值可能会被下溢至零,导致梯度消失。

梯度下溢问题主要涉及如下几个点。

数值范围限制:

  • float16数据类型相比float32具有更小的数值范围和更低的精度。float16的表示范围大约是6.10e-5到6.55e4,而float32的表示范围是从1.18e-38到3.4e38。这意味着float16在表示非常小或非常大的数值时可能会遇到问题。

梯度消失:

  • 在深度学习训练过程中,梯度是通过反向传播计算得到的。如果梯度值非常小,以至于低于float16能表示的最小值,这些梯度值就会变成零。这种现象称为梯度消失。
  • 梯度消失会导致网络权重无法有效更新,从而影响模型的训练效果和收敛速度。

影响训练稳定性:

  • 梯度下溢可能导致训练过程中的数值不稳定,使得优化算法(如SGD、Adam等)无法正常工作。
  • 这种不稳定性可能会引起训练误差的波动,甚至导致训练失败。

解决方案:

(一般只有在分辨率小的时候会考虑)

  • 梯度缩放(GradScaler):通过缩放损失值或梯度,使得在计算梯度时使用更高的数值范围,从而避免下溢。在更新权重后再将梯度缩放回原始尺度。(torch.cuda.amp.GradScaler)
  • 混合精度训练:结合使用float16和float32数据类型,即在计算过程中使用float16以加速运算和减少内存消耗,而在需要高精度计算的部分(如梯度更新)使用float32。
  • 使用更高的精度:如果硬件支持,可以采用bfloat16等具有更高动态范围的数据类型来进行训练。
  • 自动混合精度(AMP)训练是解决这一问题的有效方法,它可以在不牺牲模型性能的前提下,提高训练速度和效率。通过智能地管理不同计算阶段的数值精度,AMP能够有效避免梯度下溢等问题。
相关推荐
uesowys3 分钟前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56783 分钟前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子6 分钟前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能44 分钟前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144871 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile1 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5771 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7251 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h1 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习