神经网络——梯度下溢

1.梯度下溢问题是什么?

在低精度(如float16)训练中出现的梯度下溢问题是指在进行梯度计算和更新时,由于数值精度较低,梯度值可能变得非常小,以至于接近或低于浮点数表示的最小非零值。这种情况下,梯度值可能会被下溢至零,导致梯度消失。

梯度下溢问题主要涉及如下几个点。

数值范围限制:

  • float16数据类型相比float32具有更小的数值范围和更低的精度。float16的表示范围大约是6.10e-5到6.55e4,而float32的表示范围是从1.18e-38到3.4e38。这意味着float16在表示非常小或非常大的数值时可能会遇到问题。

梯度消失:

  • 在深度学习训练过程中,梯度是通过反向传播计算得到的。如果梯度值非常小,以至于低于float16能表示的最小值,这些梯度值就会变成零。这种现象称为梯度消失。
  • 梯度消失会导致网络权重无法有效更新,从而影响模型的训练效果和收敛速度。

影响训练稳定性:

  • 梯度下溢可能导致训练过程中的数值不稳定,使得优化算法(如SGD、Adam等)无法正常工作。
  • 这种不稳定性可能会引起训练误差的波动,甚至导致训练失败。

解决方案:

(一般只有在分辨率小的时候会考虑)

  • 梯度缩放(GradScaler):通过缩放损失值或梯度,使得在计算梯度时使用更高的数值范围,从而避免下溢。在更新权重后再将梯度缩放回原始尺度。(torch.cuda.amp.GradScaler)
  • 混合精度训练:结合使用float16和float32数据类型,即在计算过程中使用float16以加速运算和减少内存消耗,而在需要高精度计算的部分(如梯度更新)使用float32。
  • 使用更高的精度:如果硬件支持,可以采用bfloat16等具有更高动态范围的数据类型来进行训练。
  • 自动混合精度(AMP)训练是解决这一问题的有效方法,它可以在不牺牲模型性能的前提下,提高训练速度和效率。通过智能地管理不同计算阶段的数值精度,AMP能够有效避免梯度下溢等问题。
相关推荐
三天不学习8 分钟前
浅析AI大模型为何需要向量数据库?【入门基础】
数据库·人工智能·欧氏距离·向量数据库·余弦相似度
WenGyyyL18 分钟前
研读论文——《用于3D工业异常检测的自监督特征自适应》
人工智能·python·深度学习·机器学习·计算机视觉·3d
fydw_71523 分钟前
音频生成技术的前沿探索:从语音合成到智能Podcast
人工智能·音视频·语音识别
选型宝24 分钟前
腾讯怎样基于DeepSeek搭建企业应用?怎样私有化部署满血版DS?直播:腾讯云X DeepSeek!
人工智能·ai·云计算·腾讯云·选型宝
多巴胺与内啡肽.1 小时前
OpenCV进阶操作:人脸检测、微笑检测
人工智能·opencv·计算机视觉
Wnq100721 小时前
基于 NanoDet 的工厂巡检机器人目标识别系统研究与实现
人工智能·机器学习·计算机视觉·目标跟踪·机器人·巡检机器人
一年春又来1 小时前
AI-02a5a6.神经网络-与学习相关的技巧-批量归一化
人工智能·神经网络·学习
kovlistudio1 小时前
机器学习第十讲:异常值检测 → 发现身高填3米的不合理数据
人工智能·机器学习
马拉AI1 小时前
解锁Nature发文小Tips:LSTM、CNN与Attention的创新融合之路
人工智能·cnn·lstm
sufu10651 小时前
SpringAI更新:废弃tools方法、正式支持DeepSeek!
人工智能·后端