AI(14)-prompt

1.BaseLLM 和Tuned LLM之间的区别

基本模型

指令微调模型

人类反强化学习

2.指南

下载包 +导入包+设置key

2个基本原则

写明确特定的指令

给模型时间思考

2.1.使用分割符清楚地指示输入的不同部分

示例:对这个段落进行总结,将用3个单引号分割的文本总结为一句话

我们用getCompletion帮助函数来获取响应

我们会获得下面的话

分割符:可以是任何的,只要让模型知道即可。

2.要求结构化输出

以下为输出的内容

3.要求模型检查是否满足条件

你将有三个引号界定的文本,如果它包含一系列的指示,
重写那些指示并按照以下格式写出步骤
如果没有,则写入"未提供步骤"

结果:

以一致的风格回答问题

2.2 指定完成任务所需的步骤



结果

在让模型说出答案是否正确之前,为模型提供足够时间去实际思考问题。

3.迭代

1.有想法,获取数据,训练模型,得到结果。

2.查看输出,进行误差分析,找出它工作或不工作的地方。

甚至改变你解决问题的思路或方法。

然后运行另一个实验,如此循环迭代,直到有效的机器学习模型。

当你在编写提示以使用LLM开发应用程序时,

过程如下4步:

1.清晰的表达

2.分析为什么说明不够清晰,或者没有给算法足够的时间思考迭代的过程

3.重新定义想法和表达

4.重复。

需要有一个开发适合你的应用程序的好提示的过程。

3.1迭代结构图

3.2代码

1.导入包,

调用函数,

2.输入 一个说明书

3.提出要求:

4.1给出结果

介绍了一把令人惊叹的中世纪灵感的办公椅,完美的版本。

4.2 最多使用50个单词

结果

4.3 用3句话描述

问题:如果有100份技术文档,怎么处理?

4.摘要

总结文本

1.导入包

2.任务:

总结一个:

总结多个:

5.推理

任务

提取标签,提取名称,理解文本情感等方面的任务。

1.导入包

2.输入

3.提问得到回答

擅长于在文字中提取信息。

使用监督学习,分类器很难做到

格式化输出

json key value;
format the anger value as a boolean.
变量按指定类型输出。

给出文章关键词

6转换

一段文本从一种语言转换成另一种语言

1.翻译成西班牙语

2.告诉我这是什么语言

多句翻译

2.格式转换json ->xml等

3.拼写检查和语法检查

7.扩展

8.聊天机器人

1.定义辅助函数

收集用户信息并追加到一个名为上下文的列表中,这个推理的上下文会越来越长。

模型就有了它的信息,以确定下一步要做什么。

how much?

相关推荐
qiu_zhongya2 分钟前
iree 用C++来运行Qwen 2.5 0.5b
开发语言·c++·人工智能
拾贰_C8 分钟前
【anaconda】anaconda安装配置,git安装配置以及pytorch安装
人工智能·pytorch·git
荼蘼15 分钟前
Dlib+OpenCV 人脸轮廓绘制
人工智能·opencv·计算机视觉
九河云18 分钟前
物流仓储自动化升级:物道供应链 AGV 机器人实现分拣效率提升 60%
人工智能·科技·物联网·机器人·自动化
正点原子24 分钟前
正点原子 x STM32:智能加速边缘AI应用开发!
人工智能·stm32·嵌入式硬件
金井PRATHAMA31 分钟前
GraphRAG(知识图谱结合大模型)对人工智能中自然语言处理的深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
CCSBRIDGE1 小时前
Browser-Use 的实现原理
人工智能
愚公搬代码1 小时前
【愚公系列】《人工智能70年》044-数据科学崛起(安全与隐私,硬币的另一面)
人工智能·安全
黄啊码1 小时前
【黄啊码】AI总瞎编?不是BUG,而是天赋技能
人工智能
黄啊码1 小时前
【黄啊码】当内容成为“预制菜”,我们又该怎么办?
人工智能