论文略读:Uncovering Hidden Representations in Language Models

202502 arxiv

说一下主要结论吧

  • 对于下游任务,语言模型的中间层在所有架构和任务中始终优于最后一层
    • 这挑战了使用最后一层表示的传统观点。
  • 不同的架构表现出不同的信息压缩模式。自回归模型在中间层存在瓶颈,而双向模型则保持更均匀的趋势
      • BERT通过双向编码整个输入,通常在各层之间保持较高的熵值,这表明压缩较少
        • 模型可以一次看到所有的token,因此不需要丢弃太多信息
      • 只有解码器的Pythia展示出一个明显的中层熵值下降
        • 反映出其自回归目标在网络中部倾向于过滤或剪枝非本地细节
        • 因此,Pythia的"最佳状态"通常位于中间深度,在这里它平衡了必要的上下文和压缩
      • Mamba通过状态空间方法处理序列,导致其在深度上的曲线更为平坦和均匀
        • 它既不像BERT那样保持大量信息,也不像Pythia的中间层那样进行激烈的压缩
  • 较大的decoder-only模型表现出更明显的中间压缩
    • 这表明它们在提炼相关特征方面的能力增强
  • 不同Transformer子组件对于信息压缩的影响不一样
    • 通过在每个子层后测量熵值,发现残差连接驱动了中间网络压缩
      • 在残差之前的子层(例如预注意力、原始注意力或MLP预残差输出)通常表现出较轻微的压缩;它们的表示仍然保留了大部分原始变异性。
      • 残差子层则表现出明显的熵值下降,反映出显著的信息过滤。
      • ------>表明残差连接作为一种正则化器或"噪声过滤器",有助于平滑隐藏表示中的虚假成分
  • 连锁思维(CoT)微调使模型能够在整个层中保持更丰富的上下文
    • CoT微调促使模型在其隐藏层中保持更多的上下文,从而能够更好地进行多步推理
相关推荐
小王毕业啦几秒前
2022年 国内税务年鉴PDF电子版Excel
大数据·人工智能·数据挖掘·数据分析·数据统计·年鉴·社科数据
12960045221 分钟前
机器翻译模型笔记
人工智能·笔记·机器翻译
superior tigre31 分钟前
RNN循环网络:给AI装上“记忆“(superior哥AI系列第5期)
人工智能·rnn·深度学习
s1533541 分钟前
8.RV1126-OPENCV 视频中添加LOGO
人工智能·opencv·音视频
TextIn智能文档云平台1 小时前
从OCR到Document Parsing,AI时代的非结构化数据处理发生了什么改变?
人工智能·自然语言处理·ocr·pdf解析·textin·复杂文档解析
(・Д・)ノ1 小时前
python打卡day44
人工智能·python·机器学习
MiaoChuPPT1 小时前
秒出PPT正式改名秒出AI,开启AI赋能新体验!
人工智能·powerpoint
引量AI2 小时前
如何用AI高效运营1000+Tiktok矩阵账号
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
视觉语言导航2 小时前
低空城市场景下的多无人机任务规划与动态协调!CoordField:无人机任务分配的智能协调场
人工智能·深度学习·无人机·具身智能
硬核隔壁老王2 小时前
一篇文章带你快速理解 MCP
人工智能·程序员·llm