论文略读:Uncovering Hidden Representations in Language Models

202502 arxiv

说一下主要结论吧

  • 对于下游任务,语言模型的中间层在所有架构和任务中始终优于最后一层
    • 这挑战了使用最后一层表示的传统观点。
  • 不同的架构表现出不同的信息压缩模式。自回归模型在中间层存在瓶颈,而双向模型则保持更均匀的趋势
      • BERT通过双向编码整个输入,通常在各层之间保持较高的熵值,这表明压缩较少
        • 模型可以一次看到所有的token,因此不需要丢弃太多信息
      • 只有解码器的Pythia展示出一个明显的中层熵值下降
        • 反映出其自回归目标在网络中部倾向于过滤或剪枝非本地细节
        • 因此,Pythia的"最佳状态"通常位于中间深度,在这里它平衡了必要的上下文和压缩
      • Mamba通过状态空间方法处理序列,导致其在深度上的曲线更为平坦和均匀
        • 它既不像BERT那样保持大量信息,也不像Pythia的中间层那样进行激烈的压缩
  • 较大的decoder-only模型表现出更明显的中间压缩
    • 这表明它们在提炼相关特征方面的能力增强
  • 不同Transformer子组件对于信息压缩的影响不一样
    • 通过在每个子层后测量熵值,发现残差连接驱动了中间网络压缩
      • 在残差之前的子层(例如预注意力、原始注意力或MLP预残差输出)通常表现出较轻微的压缩;它们的表示仍然保留了大部分原始变异性。
      • 残差子层则表现出明显的熵值下降,反映出显著的信息过滤。
      • ------>表明残差连接作为一种正则化器或"噪声过滤器",有助于平滑隐藏表示中的虚假成分
  • 连锁思维(CoT)微调使模型能够在整个层中保持更丰富的上下文
    • CoT微调促使模型在其隐藏层中保持更多的上下文,从而能够更好地进行多步推理
相关推荐
飞哥数智坊4 分钟前
放弃 Cursor 后,我又试了 CodeBuddy,感觉国产又行了
人工智能·codebuddy
新智元24 分钟前
世界首富换人!81 岁硅谷狂人 4000 亿身价碾压马斯克,33 岁华裔才女逆袭
人工智能·openai
lingling00927 分钟前
分子生物学ELN系统:如何通过衍因科技实现实验室效率革命
人工智能
机器之心38 分钟前
交互扩展时代来临:创智复旦字节重磅发布AgentGym-RL,昇腾加持,开创智能体训练新范式
人工智能·openai
max50060041 分钟前
实时多模态电力交易决策系统:设计与实现
图像处理·人工智能·深度学习·算法·音视频
男孩李1 小时前
浅谈代理流程自动化 (APA)
运维·人工智能·自动化
君名余曰正则1 小时前
机器学习06——支持向量机(SVM核心思想与求解、核函数、软间隔与正则化、支持向量回归、核方法)
人工智能·机器学习·支持向量机
sjr20011 小时前
从huggingface下载模型时有哪些文件?
人工智能·机器学习
moz与京1 小时前
【面试向】热门技术话题(上)
人工智能·物联网·机器学习·面试·web3·区块链·元宇宙
wyfwyf___2 小时前
5G+IoT+AI:新质工业新图景,从预测性维护到全链路数智化
人工智能·科技·物联网·5g·信息与通信