论文略读:Uncovering Hidden Representations in Language Models

202502 arxiv

说一下主要结论吧

  • 对于下游任务,语言模型的中间层在所有架构和任务中始终优于最后一层
    • 这挑战了使用最后一层表示的传统观点。
  • 不同的架构表现出不同的信息压缩模式。自回归模型在中间层存在瓶颈,而双向模型则保持更均匀的趋势
      • BERT通过双向编码整个输入,通常在各层之间保持较高的熵值,这表明压缩较少
        • 模型可以一次看到所有的token,因此不需要丢弃太多信息
      • 只有解码器的Pythia展示出一个明显的中层熵值下降
        • 反映出其自回归目标在网络中部倾向于过滤或剪枝非本地细节
        • 因此,Pythia的"最佳状态"通常位于中间深度,在这里它平衡了必要的上下文和压缩
      • Mamba通过状态空间方法处理序列,导致其在深度上的曲线更为平坦和均匀
        • 它既不像BERT那样保持大量信息,也不像Pythia的中间层那样进行激烈的压缩
  • 较大的decoder-only模型表现出更明显的中间压缩
    • 这表明它们在提炼相关特征方面的能力增强
  • 不同Transformer子组件对于信息压缩的影响不一样
    • 通过在每个子层后测量熵值,发现残差连接驱动了中间网络压缩
      • 在残差之前的子层(例如预注意力、原始注意力或MLP预残差输出)通常表现出较轻微的压缩;它们的表示仍然保留了大部分原始变异性。
      • 残差子层则表现出明显的熵值下降,反映出显著的信息过滤。
      • ------>表明残差连接作为一种正则化器或"噪声过滤器",有助于平滑隐藏表示中的虚假成分
  • 连锁思维(CoT)微调使模型能够在整个层中保持更丰富的上下文
    • CoT微调促使模型在其隐藏层中保持更多的上下文,从而能够更好地进行多步推理
相关推荐
止步前行16 分钟前
Cursor配置DeepSeek调用MCP服务实现任务自动化
人工智能·cursor·deepseek·mcp
阿星AI工作室21 分钟前
AI产品经理必看的大模型微调劝退指南丨实战笔记
人工智能·产品经理·ai编程
Damon小智21 分钟前
蚂蚁百宝箱实战:艺考生文化课助手的设计与搭建
人工智能·mcp
辣么大21 分钟前
03 环境:树莓派环境配置
人工智能
程序员NEO27 分钟前
Spring AI 骚操作:让大模型乖乖听话,直接返回 Java 对象!
人工智能·后端
金智维科技官方27 分钟前
利用AI Agent实现精准的数据分析
人工智能·数据挖掘·数据分析
星辰大海的精灵28 分钟前
FastAPI开发AI应用,多厂商模型使用指南
人工智能·后端·架构
VXHAruanjian8881 小时前
CosyVoice2.0整合包:免费一键启动,释放语音克隆的创意潜能
人工智能
慕婉03071 小时前
Tensor自动微分
人工智能·pytorch·python
行走的山峰1 小时前
npu-driver 23.0.3驱动安装
语言模型