论文略读:Uncovering Hidden Representations in Language Models

202502 arxiv

说一下主要结论吧

  • 对于下游任务,语言模型的中间层在所有架构和任务中始终优于最后一层
    • 这挑战了使用最后一层表示的传统观点。
  • 不同的架构表现出不同的信息压缩模式。自回归模型在中间层存在瓶颈,而双向模型则保持更均匀的趋势
      • BERT通过双向编码整个输入,通常在各层之间保持较高的熵值,这表明压缩较少
        • 模型可以一次看到所有的token,因此不需要丢弃太多信息
      • 只有解码器的Pythia展示出一个明显的中层熵值下降
        • 反映出其自回归目标在网络中部倾向于过滤或剪枝非本地细节
        • 因此,Pythia的"最佳状态"通常位于中间深度,在这里它平衡了必要的上下文和压缩
      • Mamba通过状态空间方法处理序列,导致其在深度上的曲线更为平坦和均匀
        • 它既不像BERT那样保持大量信息,也不像Pythia的中间层那样进行激烈的压缩
  • 较大的decoder-only模型表现出更明显的中间压缩
    • 这表明它们在提炼相关特征方面的能力增强
  • 不同Transformer子组件对于信息压缩的影响不一样
    • 通过在每个子层后测量熵值,发现残差连接驱动了中间网络压缩
      • 在残差之前的子层(例如预注意力、原始注意力或MLP预残差输出)通常表现出较轻微的压缩;它们的表示仍然保留了大部分原始变异性。
      • 残差子层则表现出明显的熵值下降,反映出显著的信息过滤。
      • ------>表明残差连接作为一种正则化器或"噪声过滤器",有助于平滑隐藏表示中的虚假成分
  • 连锁思维(CoT)微调使模型能够在整个层中保持更丰富的上下文
    • CoT微调促使模型在其隐藏层中保持更多的上下文,从而能够更好地进行多步推理
相关推荐
光泽雨29 分钟前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
Σίσυφος190037 分钟前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…1 小时前
机器学习的商业化变现
人工智能·机器学习
sali-tec1 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_1 小时前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能
AI袋鼠帝1 小时前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha1 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
方见华Richard1 小时前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算
忆~遂愿1 小时前
GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
java·开发语言·人工智能
凯子坚持 c1 小时前
CANN-LLM:基于昇腾 CANN 的高性能、全功能 LLM 推理引擎
人工智能·安全