Opencv Canny边缘检测

边缘检测的目的是找到灰度值的突变

步骤:

  1. 使用高斯滤波,以平滑图像、滤除噪声
  2. 计算图像中每个像素点的梯度强度和方向
  3. 应用非极大值预测,以消除边缘检测的杂散响应
  4. 应用双阈值检测来确定真实的和潜在的边缘
  5. 通过抑制孤立的弱边缘最终完成边缘检测

5.1 高斯滤波器

H = [ 0.0924 0.1192 0.0924 0.1192 0.1538 0.1192 0.0924 0.1192 0.0924 ] H = \begin{bmatrix}0.0924 & 0.1192 & 0.0924 \\0.1192 & 0.1538 & 0.1192 \\0.0924 & 0.1192 & 0.0924\end{bmatrix} H= 0.09240.11920.09240.11920.15380.11920.09240.11920.0924

H H H为3×3高斯滤波器,经过归一化处理。
e = H ∗ A = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] ∗ [ a b c d e f g h i ] = sum ( [ a × h 11 b × h 12 c × h 13 d × h 21 e × h 22 f × h 23 g × h 31 h × h 32 i × h 33 ] ) e = H * A = \begin{bmatrix}h_{11} & h_{12} & h_{13} \\h_{21} & h_{22} & h_{23} \\h_{31} & h_{32} & h_{33}\end{bmatrix} * \begin{bmatrix}a & b & c \\d & e & f \\g & h & i\end{bmatrix} = \text{sum} \left( \begin{bmatrix}a \times h_{11} & b \times h_{12} & c \times h_{13} \\d \times h_{21} & e \times h_{22} & f \times h_{23} \\g \times h_{31} & h \times h_{32} & i \times h_{33}\end{bmatrix} \right) e=H∗A= h11h21h31h12h22h32h13h23h33 ∗ adgbehcfi =sum a×h11d×h21g×h31b×h12e×h22h×h32c×h13f×h23i×h33
A A A为图像区域,与高斯滤波器对应元素相乘后得到 e e e为滤除噪声后的结果矩阵。

5.2 梯度和方向

S x = [ − 1 0 1 − 2 0 2 − 1 0 1 ] S y = [ 1 2 1 0 0 0 − 1 − 2 − 1 ] S_x = \begin{bmatrix}-1 & 0 & 1 \\-2 & 0 & 2 \\-1 & 0 & 1\end{bmatrix}S_y = \begin{bmatrix}1 & 2 & 1 \\0 & 0 & 0 \\-1 & -2 & -1\end{bmatrix} Sx= −1−2−1000121 Sy= 10−120−210−1

这是Sobel算子的两个卷积核 S x S_{x} Sx和 S y S_{y} Sy。
G x = S x ∗ A = [ − 1 0 1 − 2 0 2 − 1 0 1 ] ∗ [ a b c d e f g h i ] = sum ( [ − a 0 c − 2 d 0 2 f − g 0 i ] ) G y = S y ∗ A = [ 1 2 1 0 0 0 − 1 − 2 − 1 ] ∗ [ a b c d e f g h i ] = sum ( [ a 2 b c 0 0 0 − g − 2 h − i ] ) G_x = S_x * A = \begin{bmatrix}-1 & 0 & 1 \\-2 & 0 & 2 \\-1 & 0 & 1\end{bmatrix} * \begin{bmatrix}a & b & c \\d & e & f \\g & h & i\end{bmatrix} = \text{sum} \left( \begin{bmatrix}-a & 0 & c \\-2d & 0 & 2f \\-g & 0 & i\end{bmatrix} \right) \\G_y = S_y * A = \begin{bmatrix}1 & 2 & 1 \\0 & 0 & 0 \\-1 & -2 & -1\end{bmatrix} * \begin{bmatrix}a & b & c \\d & e & f \\g & h & i\end{bmatrix} = \text{sum} \left( \begin{bmatrix}a & 2b & c \\0 & 0 & 0 \\-g & -2h & -i\end{bmatrix} \right) Gx=Sx∗A= −1−2−1000121 ∗ adgbehcfi =sum −a−2d−g000c2fi Gy=Sy∗A= 10−120−210−1 ∗ adgbehcfi =sum a0−g2b0−2hc0−i

计算x和y方向上的梯度,再计算总梯度和方向
G = G x 2 + G y 2 θ = arctan ⁡ ( G y G x ) G = \sqrt{G_x^2 + G_y^2}\\\theta = \arctan\left(\frac{G_y}{G_x}\right) G=Gx2+Gy2 θ=arctan(GxGy)

5.3 非极大值抑制

非极大值抑制目的是确保检测到的边缘是细的、连续的,并且尽可能地精确。这一步骤非极大值抑制能够有效地抑制非边缘点,保留真正的边缘点。

非极大值抑制有两种方法:

线性插值法

图中ABCDE每个点代表一个像素点,E点的梯度为蓝色的线,梯度方向指向左上角,边缘与梯度方向垂直。想确定这条梯度线上的边缘,就要比较E点的梯度和f、g点的梯度,而f、g点为亚像素点,所以f点需要通过A点与B点的梯度值求得。

f点的梯度值 = M(A)*w~1~+M(B)*w~2~,其中M表示梯度幅值,w~1~可等于L(Af)/L(AB),同理w~2~也是如此

同理,可求得g点的梯度值,从而比较三个点的梯度值,确定哪点最大该点与梯度值的垂直方向就是边缘。

梯度方向离散化

我们可以把一个像素的梯度方向离散化为八个方向,这样就只需计算前后即可,不需要插值

将每个像素的梯度方向分解为八个方向。假设梯度方向是45°,如果点 A 的梯度幅值大于其相邻像素点的梯度幅值,则保留点 A;否则,抑制点 A。

5.4 双阈值检测

梯度幅值大于高阈值的像素被标记为强边缘像素,而梯度幅值小于低阈值的像素被标记为非边缘像素。梯度幅值介于两者之间的像素被标记为弱边缘像素。

强边缘像素通常是确定的边缘,而弱边缘像素是否属于边缘则需要进一步判断。通常,低阈值设置为高阈值的一半。

代码实现Canny边缘检测:

python 复制代码
img = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)
# 传入图片数据和两个阈值
v1 = cv2.Canny(img, 80, 150)
v2 = cv2.Canny(img, 50, 100)

res = np.hstack((v1, v2))
cv_show(res, 'res')

两个阈值越大,边缘的精确度就会提高,检测到的边缘就会减少,一些细节会丢失,也有可能会漏检真实的边缘。

相关推荐
正在走向自律几秒前
DeepSeek:开启AI联动与模型微调的无限可能
人工智能
天一生水water19 分钟前
Deepseek:物理神经网络PINN入门教程
人工智能·深度学习·神经网络
shelly聊AI23 分钟前
【硬核拆解】DeepSeek开源周五连击:中国AI底层技术的“破壁之战”
人工智能·深度学习·开源·deepseek
油泼辣子多加26 分钟前
【计算机视觉】手势识别
人工智能·opencv·计算机视觉
张琪杭28 分钟前
PyTorch大白话解释算子二
人工智能·pytorch·python
匹马夕阳1 小时前
ollama本地部署DeepSeek-R1大模型使用前端JS调用的详细流程
人工智能·ai·js
修昔底德1 小时前
费曼学习法12 - 告别 Excel!用 Python Pandas 开启数据分析高效之路 (Pandas 入门篇)
人工智能·python·学习·excel·pandas
歌刎1 小时前
从 Transformer 到 DeepSeek-R1:大型语言模型的变革之路与前沿突破
人工智能·深度学习·语言模型·aigc·transformer·deepseek
西猫雷婶1 小时前
神经网络|(十二)|常见激活函数
人工智能·深度学习·神经网络
go54631584651 小时前
基于深度学习的静态图像穿搭美学评估与优化建议系统的基本实现思路及示例代码
人工智能·深度学习