Spark内存迭代计算

一、宽窄依赖

窄依赖:父RDD的一个分区数据全部发往子RDD的一个分区

宽依赖:父RDD的一个分区数据发往子RDD的多个分区,也称为shuffle

二、Spark是如何进行内存计算的?DAG的作用?Stage阶段划分的作用?

(1)Spark生成DAG图

(2)基于宽窄依赖对DAG图进行阶段划分

(3)每个stage内部都是窄依赖,窄依赖内,前后形成1:1的分区关系,一个stage的多个并行任务就成为了多个内存迭代计算管道

(4)这些内存迭代计算的管道,就是一个个具体的执行Task

(5)一个Task是一个具体的线程,任务跑在一个线程之中,就是走内存计算了。

相关推荐
zxsz_com_cn17 分钟前
智能化设备健康管理:中讯烛龙预测性维护系统引领行业变革
大数据·架构
沉下去,苦磨练!34 分钟前
kafka的部署和jmeter连接kafka
分布式·jmeter·kafka
Pigwantofly44 分钟前
SpringAI入门及浅实践,实战 Spring‎ AI 调用大模型、提示词工程、对话记忆、Adv‎isor 的使用
java·大数据·人工智能·spring
拓端研究室1 小时前
专题:2025电商增长新势力洞察报告:区域裂变、平台垄断与银发平权|附260+报告PDF、原数据表汇总下载
大数据·人工智能
阿里云大数据AI技术2 小时前
[VLDB 2025]面向Flink集群巡检的交叉对比学习异常检测
大数据·人工智能·flink
青云交3 小时前
电科金仓 KingbaseES 深度解码:技术突破・行业实践・沙龙邀约 -- 融合数据库的变革之力
大数据·数据安全·数字化转型·kingbasees·企业级应用·融合数据库·多模存储
shinelord明3 小时前
【计算机网络架构】网状型架构简介
大数据·分布式·计算机网络·架构·计算机科学与技术
lucky_syq4 小时前
Flink窗口:解锁流计算的秘密武器
大数据·flink
明天好,会的4 小时前
从Spark/Flink到WASM:流式处理框架的演进与未来展望
flink·spark·wasm
gorgor在码农5 小时前
Elasticsearch 的聚合(Aggregations)操作详解
大数据·elasticsearch·搜索引擎