Spark机器学习库MLlib编程实践

Spark机器学习库MLlib编程实践

文章目录

  • Spark机器学习库MLlib编程实践
      1. 写在前面
      1. 正文
      • 1.1 案例目的
      • 1.2 案例
        • 1.2.1 数据导入
        • 1.2.2 进行主成分分析(**PCA**)
        • 1.2.3 训练分类模型并预测居民收入
        • 1.2.4 超参数调优
      • 1.3 数据集展示
      • 1.4 程序编写

0. 写在前面

  • 操作系统:Linux(CentOS7.5)
  • Spark版本:Spark3.0.0
  • Scala版本:Scala2.12.1

1. 正文

1.1 案例目的

  • 通过实验掌握基本的MLLib编程方法;

  • 掌握用MLLib解决一些常见的数据分析问题,包括数据导入、成分分析和分类和预测等。

1.2 案例

1.2.1 数据导入

从文件中导入数据,并转化为DataFrame。

1.2.2 进行主成分分析(PCA

对6个连续型的数值型变量进行主成分分析。PCA(主成分分析)是通过正交变换把一组相关变量的观测值转化成一组线性无关的变量值,即主成分的一种方法。PCA通过使用主成分把特征向量投影到低维空间,实现对特征向量的降维。请通过setK()方法将主成分数量设置为3,把连续型的特征向量转化成一个3维的主成分。

1.2.3 训练分类模型并预测居民收入

在主成分分析的基础上,采用逻辑斯蒂回归,或者决策树模型预测居民收入是否超过50K;对Test数据集进行验证。

1.2.4 超参数调优

利用CrossValidator确定最优的参数,包括最优主成分PCA的维数、分类器自身的参数等。

1.3 数据集展示

  • 数据集
  • 测试集

1.4 程序编写

本案例是在Spark-Shell环境下执行的

  • (1)针对数据导入,提前导入必要的包,如下所示
scala 复制代码
import org.apache.spark.ml.feature.PCA
import org.apache.spark.sql.Row
import org.apache.spark.ml.linalg.{Vector,Vectors}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.{Pipeline,PipelineModel}
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer,HashingTF, Tokenizer}
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.classification.LogisticRegressionModel
import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression}
import org.apache.spark.sql.functions
import org.apache.spark.ml.tuning.{ CrossValidator, CrossValidatorModel, ParamGridBuilder }
  • 将数据集转换为DataFrame
scala 复制代码
import spark.implicits._
case class Adult(features: org.apache.spark.ml.linalg.Vector, label: String)

val df = sc.textFile("/export/server/spark-3.0.0-bin-hadoop3.2/adult.data.txt").map(_.split(",")).map(p => Adult(Vectors.dense(p(0).toDouble,p(2).toDouble,p(4).toDouble, p(10).toDouble, p(11).toDouble, p(12).toDouble), p(14).toString())).toDF()
  • (2)读取数据集和测试集,进行主成分分析(PCA
scala 复制代码
val test = sc.textFile("/export/server/spark-3.0.0-bin-hadoop3.2/adult.test.txt").map(_.split(",")).map(p => Adult(Vectors.dense(p(0).toDouble,p(2).toDouble,p(4).toDouble, p(10).toDouble, p(11).toDouble, p(12).toDouble), p(14).toString())).toDF()

val pca = new PCA().setInputCol("features").setOutputCol("pcaFeatures").setK(3).fit(df)
val result = pca.transform(df)
val testdata = pca.transform(test)

result.show(false)
testdata.show(false)

可以看到数据集和测试集导入成功,如下图所示:

  • 数据集
  • 测试集
  • (3)训练分类模型并预测居民收入
scala 复制代码
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(result)
labelIndexer.labels.foreach(println)
val featureIndexer = new VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures").fit(result)
println(featureIndexer.numFeatures)
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
val lr = new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100)
val lrPipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, lr, labelConverter))
val lrPipelineModel = lrPipeline.fit(result)
val lrModel = lrPipelineModel.stages(2).asInstanceOf[LogisticRegressionModel]
println("Coefficients: " + lrModel.coefficientMatrix+"Intercept: "+lrModel.interceptVector+"numClasses: "+lrModel.numClasses+"numFeatures: "+lrModel.numFeatures)
val lrPredictions = lrPipelineModel.transform(testdata)
val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")

val lrAccuracy = evaluator.evaluate(lrPredictions)

println("Test Error = " + (1.0 - lrAccuracy))

预测的错误率如下图所示:

  • (4)超参数调优
scala 复制代码
val pca = new PCA().setInputCol("features").setOutputCol("pcaFeatures")
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df)
val featureIndexer = new VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures")
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
val lr = new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100)
val lrPipeline = new Pipeline().setStages(Array(pca, labelIndexer, featureIndexer, lr, labelConverter))
val paramGrid = new ParamGridBuilder().addGrid(pca.k, Array(1,2,3,4,5,6)).addGrid(lr.elasticNetParam, Array(0.2,0.8)).addGrid(lr.regParam, Array(0.01, 0.1, 0.5)).build()

paramGrid的结果值如下所示:

scala 复制代码
paramGrid: Array[org.apache.spark.ml.param.ParamMap] =
Array({
	logreg_9e1b758452ee-elasticNetParam: 0.2,
	pca_e02a5078c882-k: 1,
	logreg_9e1b758452ee-regParam: 0.01
}, {
	logreg_9e1b758452ee-elasticNetParam: 0.2,
	pca_e02a5078c882-k: 2,
	logreg_9e1b758452ee-regParam: 0.01
}, {
	logreg_9e1b758452ee-elasticNetParam: 0.2,
	pca_e02a5078c882-k: 3,
	logreg_9e1b758452ee-regParam: 0.01
}, {
	logreg_9e1b758452ee-elasticNetParam: 0.2,
	pca_e02a5078c882-k: 4,
	logreg_9e1b758452ee-regParam: 0.01
}, {
	logreg_9e1b758452ee-elasticNetParam: 0.2,
	pca_e02a5078c882-k: 5,
	logreg_9e1b758452ee-regParam: 0.01
}, {
	logreg_9e1b758452ee-elasticNetParam: 0.2,
	pca_e02a5078c882-k: 6,
	logreg_9e1b758452ee-regParam: 0.01
}, {
	logreg_9e1b758452ee-elasticNetParam: 0.8,
	pca_e02a5078c882...
scala 复制代码
val cv = new CrossValidator().setEstimator(lrPipeline).setEvaluator(new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")).setEstimatorParamMaps(paramGrid).setNumFolds(3)
val cvModel = cv.fit(df)
val lrPredictions=cvModel.transform(test)
val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
val lrAccuracy = evaluator.evaluate(lrPredictions)
println("准确率为"+lrAccuracy)
val bestModel= cvModel.bestModel.asInstanceOf[PipelineModel]
val lrModel = bestModel.stages(3).asInstanceOf[LogisticRegressionModel]
println("Coefficients: " + lrModel.coefficientMatrix + "Intercept: "+lrModel.interceptVector+ "numClasses: "+lrModel.numClasses+"numFeatures: "+lrModel.numFeatures)
scala 复制代码
import org.apache.spark.ml.feature.PCAModel
val pcaModel = bestModel.stages(0).asInstanceOf[PCAModel]
println("Primary Component: " + pcaModel.pc)

请先提前导入org.apache.spark.ml.feature.PCAModel这个包

全文结束!!!

相关推荐
一只栖枝6 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续10 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交10 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
Moshow郑锴11 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
C++、Java和Python的菜鸟12 小时前
第六章 统计初步
算法·机器学习·概率论
Jina AI15 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
还是大剑师兰特16 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
试剂界的爱马仕19 小时前
胶质母细胞瘤对化疗的敏感性由磷脂酰肌醇3-激酶β选择性调控
人工智能·科技·算法·机器学习·ai写作
1892280486120 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
AI波克布林20 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力