神经网络|(十二)|常见激活函数

【1】引言

前序学习进程中,已经了解到神经网络的实际运算过程找那个,会使用激活函数。相关文章链接包括且不限于:

python学智能算法(六)|神经网络算法:BP神经网络算法入门-CSDN博客

神经网络|(十一)|神经元和神经网络-CSDN博客

在此基础上,本篇文章集中学习一些常见的激活函数。

【2】激活函数

【2.1】线性激活函数

线性激活函数为:

线性激活函数对应的代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

t=np.linspace(-5,5,100) #定义自变量
y=t #定义因变量

plt.plot(t,y,label='y=x') #绘图
plt.title('Y=X') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图1 线性激活函数++

【2.2】阶跃激活函数

阶跃激活函数为:

需要注意的是,这里随机取了一个判断标准0.5,实际情况可能是大于等于任何数。

阶跃激活函数对应的代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y1=[] #定义列表y1

# 当自变量大于判断开关时,列表里添加1,否则添加0
for i in t:
    if i>=0.5:
        y1.append(1)
    else:
        y1.append(0)
# 把y1从列表转化为数组,这样就能和t一一对应
y1=np.array(y1)

plt.plot(t,y1,label='y1') #绘图
plt.title('阶跃函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图2 阶跃激活函数++

【2.3】S型激活函数

S型激活函数为:

S型激活函数对应的代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y2=1/(1+np.exp(-t)) #定义因变量

plt.plot(t,y2,label='S型函数') #绘图
plt.title('S型激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图3 S型激活函数++

【2.4】双曲正切激活函数

双曲正切激活函数为:

双曲正切激活函数代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y3=np.tanh(t) #定义因变量

plt.plot(t,y3,label='双曲正切函数') #绘图
plt.title('双曲正切激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图4 双曲正切激活函数++

【2.5】修正线性单元ReLu激活函数

修正线性单元ReLu激活函数为:

修正线性单元ReLu激活函数代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量

#定义修正线性单元ReLu激活函数
def ReLu(x):
    return np.maximum(0,x) #大于0取x,小于等于0取0
y4=ReLu(t) #定义因变量

plt.plot(t,y4,label='修正线性单元ReLu函数') #绘图
plt.title('修正线性单元ReLu激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图5 修正线性单元ReLu激活函数++

【2.6】Softmax激活函数

Softmax激活函数为:

Softmax激活函数代码为:

python 复制代码
import numpy as np  #引入numpy模块
import matplotlib.pyplot as plt  #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

# 定义Softmax函数
def softmax(x):
    """
    计算输入向量x的Softmax值
    :param x: 输入的实数向量
    :return: Softmax变换后的概率分布向量
    """
    exp_x = np.exp(x) #计算当前值
    return exp_x / np.sum(exp_x, axis=0) #计算当前值所占的比例

# 生成示例输入数据
x = np.linspace(-10, 10, 100)
# 模拟多个神经元的输入
# 每一次的组成都是三个变量
inputs = np.vstack([x, 0.5 * x, 0.2 * x])

# 计算Softmax输出
# Softmax计算三个变量各自所占的比例
outputs = softmax(inputs)

# 绘制Softmax变化规律图
plt.figure(figsize=(10, 6))
for i in range(outputs.shape[0]):
    plt.plot(x, outputs[i], label=f'变量 {i+1}所占比例')

plt.title('Softmax激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.grid(True) #显示网格
plt.show() #显示图像

代码运行后的图像为:

++图6 Softmax激活函数++

Softmax激活函数实际上代表了各个输入变量所占的比例,每个X轴取值上,三个变量所占的比例综合恒为1。

为了突出对比便于理解,把除了Softmax函数以外的函数全部画到一起:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y=t

y1=[]
for i in t:
    if i>=0.5:
        y1.append(1)
    else:
        y1.append(0)
y1=np.array(y1)

y2=1/(1+np.exp(-t))

y3=np.tanh(t)


def ReLu(x):
    return np.maximum(0,x)

y4=ReLu(t)

plt.plot(t,y,label='线性函数')
plt.plot(t,y1,label='阶跃函数')
plt.plot(t,y2,label='S型函数')
plt.plot(t,y3,label='双曲正切函数')
plt.plot(t,y4,label='修正线性单元ReLu函数')

plt.title('激活函数')
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

获得的图像为:

++图7 Softmax以外激活函数对比++

【3】总结

学习了常用的激活函数,通过python对激活函数进行了绘制。

相关推荐
MARS_AI_4 小时前
云蝠智能 Voice Agent 落地展会邀约场景:重构会展行业的智能交互范式
人工智能·自然语言处理·重构·交互·语音识别·信息与通信
weixin_422456444 小时前
第N7周:调用Gensim库训练Word2Vec模型
人工智能·机器学习·word2vec
归去_来兮6 小时前
深度学习模型在C++平台的部署
c++·深度学习·模型部署
HuggingFace7 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台8 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍8 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_8 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫9 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明9 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan7710 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归