神经网络|(十二)|常见激活函数

【1】引言

前序学习进程中,已经了解到神经网络的实际运算过程找那个,会使用激活函数。相关文章链接包括且不限于:

python学智能算法(六)|神经网络算法:BP神经网络算法入门-CSDN博客

神经网络|(十一)|神经元和神经网络-CSDN博客

在此基础上,本篇文章集中学习一些常见的激活函数。

【2】激活函数

【2.1】线性激活函数

线性激活函数为:

线性激活函数对应的代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

t=np.linspace(-5,5,100) #定义自变量
y=t #定义因变量

plt.plot(t,y,label='y=x') #绘图
plt.title('Y=X') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图1 线性激活函数++

【2.2】阶跃激活函数

阶跃激活函数为:

需要注意的是,这里随机取了一个判断标准0.5,实际情况可能是大于等于任何数。

阶跃激活函数对应的代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y1=[] #定义列表y1

# 当自变量大于判断开关时,列表里添加1,否则添加0
for i in t:
    if i>=0.5:
        y1.append(1)
    else:
        y1.append(0)
# 把y1从列表转化为数组,这样就能和t一一对应
y1=np.array(y1)

plt.plot(t,y1,label='y1') #绘图
plt.title('阶跃函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图2 阶跃激活函数++

【2.3】S型激活函数

S型激活函数为:

S型激活函数对应的代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y2=1/(1+np.exp(-t)) #定义因变量

plt.plot(t,y2,label='S型函数') #绘图
plt.title('S型激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图3 S型激活函数++

【2.4】双曲正切激活函数

双曲正切激活函数为:

双曲正切激活函数代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y3=np.tanh(t) #定义因变量

plt.plot(t,y3,label='双曲正切函数') #绘图
plt.title('双曲正切激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图4 双曲正切激活函数++

【2.5】修正线性单元ReLu激活函数

修正线性单元ReLu激活函数为:

修正线性单元ReLu激活函数代码为:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量

#定义修正线性单元ReLu激活函数
def ReLu(x):
    return np.maximum(0,x) #大于0取x,小于等于0取0
y4=ReLu(t) #定义因变量

plt.plot(t,y4,label='修正线性单元ReLu函数') #绘图
plt.title('修正线性单元ReLu激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

代码运行后的图像为:

++图5 修正线性单元ReLu激活函数++

【2.6】Softmax激活函数

Softmax激活函数为:

Softmax激活函数代码为:

python 复制代码
import numpy as np  #引入numpy模块
import matplotlib.pyplot as plt  #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

# 定义Softmax函数
def softmax(x):
    """
    计算输入向量x的Softmax值
    :param x: 输入的实数向量
    :return: Softmax变换后的概率分布向量
    """
    exp_x = np.exp(x) #计算当前值
    return exp_x / np.sum(exp_x, axis=0) #计算当前值所占的比例

# 生成示例输入数据
x = np.linspace(-10, 10, 100)
# 模拟多个神经元的输入
# 每一次的组成都是三个变量
inputs = np.vstack([x, 0.5 * x, 0.2 * x])

# 计算Softmax输出
# Softmax计算三个变量各自所占的比例
outputs = softmax(inputs)

# 绘制Softmax变化规律图
plt.figure(figsize=(10, 6))
for i in range(outputs.shape[0]):
    plt.plot(x, outputs[i], label=f'变量 {i+1}所占比例')

plt.title('Softmax激活函数') #设置图名
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.grid(True) #显示网格
plt.show() #显示图像

代码运行后的图像为:

++图6 Softmax激活函数++

Softmax激活函数实际上代表了各个输入变量所占的比例,每个X轴取值上,三个变量所占的比例综合恒为1。

为了突出对比便于理解,把除了Softmax函数以外的函数全部画到一起:

python 复制代码
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示为方块的问题

t=np.linspace(-5,5,100) #定义自变量
y=t

y1=[]
for i in t:
    if i>=0.5:
        y1.append(1)
    else:
        y1.append(0)
y1=np.array(y1)

y2=1/(1+np.exp(-t))

y3=np.tanh(t)


def ReLu(x):
    return np.maximum(0,x)

y4=ReLu(t)

plt.plot(t,y,label='线性函数')
plt.plot(t,y1,label='阶跃函数')
plt.plot(t,y2,label='S型函数')
plt.plot(t,y3,label='双曲正切函数')
plt.plot(t,y4,label='修正线性单元ReLu函数')

plt.title('激活函数')
plt.xlabel('X') #设置X轴名称
plt.ylabel('Y') #设置Y轴名称
plt.legend() #显示标签
plt.show() #显示图像

获得的图像为:

++图7 Softmax以外激活函数对比++

【3】总结

学习了常用的激活函数,通过python对激活函数进行了绘制。

相关推荐
华清远见成都中心7 分钟前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
爱好读书16 分钟前
AI生成er图/SQL生成er图在线工具
人工智能
CNRio18 分钟前
智能影像:AI视频生成技术的战略布局与产业变革
人工智能
六行神算API-天璇24 分钟前
架构思考:大模型作为医疗科研的“智能中间件”
人工智能·中间件·架构·数据挖掘·ar
搞科研的小刘选手1 小时前
【ISSN/ISBN双刊号】第三届电力电子与人工智能国际学术会议(PEAI 2026)
图像处理·人工智能·算法·电力电子·学术会议
wumingxiaoyao1 小时前
AI - 使用 Google ADK 创建你的第一个 AI Agent
人工智能·ai·ai agent·google adk
拉姆哥的小屋1 小时前
从混沌到秩序:条件扩散模型在图像转换中的哲学与技术革命
人工智能·算法·机器学习
Sammyyyyy1 小时前
DeepSeek v3.2 正式发布,对标 GPT-5
开发语言·人工智能·gpt·算法·servbay
JoannaJuanCV2 小时前
自动驾驶—CARLA仿真(6)vehicle_gallery demo
人工智能·机器学习·自动驾驶·carla
Hundred billion2 小时前
深度学习基本原理和流程
人工智能·深度学习